At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To find the final velocity of the truck as it slides down the frictionless hill, we'll follow these steps:
1. Identify the given values:
- Mass of the truck, [tex]\( m = 3220 \, \text{kg} \)[/tex] (not directly needed for this problem since we are dealing with a frictionless scenario).
- Initial velocity of the truck, [tex]\( v_i = 4.71 \, \text{m/s} \)[/tex].
- Length of the hill, [tex]\( d = 22.0 \, \text{m} \)[/tex].
- Angle of the hill, [tex]\( \theta = 8.30^\circ \)[/tex].
- Acceleration due to gravity, [tex]\( g = 9.81 \, \text{m/s}^2 \)[/tex].
2. Convert the hill angle from degrees to radians for the subsequent trigonometric calculations:
[tex]\[ \theta_{radians} = 0.14486232791552936 \, \text{radians} \][/tex]
3. Calculate the component of the gravitational acceleration along the hill:
The acceleration component parallel to the hill is given by:
[tex]\[ g_{\parallel} = g \sin(\theta) = 1.4161343318195472 \, \text{m/s}^2 \][/tex]
4. Apply the kinematic equation to find the final velocity:
The kinematic equation for an object initially moving with velocity [tex]\( v_i \)[/tex] and then accelerating over a distance [tex]\( d \)[/tex] is:
[tex]\[ v_f^2 = v_i^2 + 2 a d \][/tex]
Here, [tex]\( a = g_{\parallel} \)[/tex], so:
[tex]\[ v_f^2 = v_i^2 + 2 \cdot g_{\parallel} \cdot d \][/tex]
Plugging in the known values:
[tex]\[ v_f^2 = (4.71)^2 + 2 \cdot 1.4161343318195472 \cdot 22.0 \][/tex]
[tex]\[ v_f^2 = 22.1841 + 62.30991059634 = 84.49401060006008 \][/tex]
5. Take the square root of both sides to find the final velocity [tex]\( v_f \)[/tex]:
[tex]\[ v_f = \sqrt{84.49401060006008} \approx 9.192062369243372 \, \text{m/s} \][/tex]
Thus, the final velocity [tex]\( v_f \)[/tex] of the truck is approximately:
[tex]\[ v_f = 9.192 \, \text{m/s} (rounded to three significant digits) \][/tex]
1. Identify the given values:
- Mass of the truck, [tex]\( m = 3220 \, \text{kg} \)[/tex] (not directly needed for this problem since we are dealing with a frictionless scenario).
- Initial velocity of the truck, [tex]\( v_i = 4.71 \, \text{m/s} \)[/tex].
- Length of the hill, [tex]\( d = 22.0 \, \text{m} \)[/tex].
- Angle of the hill, [tex]\( \theta = 8.30^\circ \)[/tex].
- Acceleration due to gravity, [tex]\( g = 9.81 \, \text{m/s}^2 \)[/tex].
2. Convert the hill angle from degrees to radians for the subsequent trigonometric calculations:
[tex]\[ \theta_{radians} = 0.14486232791552936 \, \text{radians} \][/tex]
3. Calculate the component of the gravitational acceleration along the hill:
The acceleration component parallel to the hill is given by:
[tex]\[ g_{\parallel} = g \sin(\theta) = 1.4161343318195472 \, \text{m/s}^2 \][/tex]
4. Apply the kinematic equation to find the final velocity:
The kinematic equation for an object initially moving with velocity [tex]\( v_i \)[/tex] and then accelerating over a distance [tex]\( d \)[/tex] is:
[tex]\[ v_f^2 = v_i^2 + 2 a d \][/tex]
Here, [tex]\( a = g_{\parallel} \)[/tex], so:
[tex]\[ v_f^2 = v_i^2 + 2 \cdot g_{\parallel} \cdot d \][/tex]
Plugging in the known values:
[tex]\[ v_f^2 = (4.71)^2 + 2 \cdot 1.4161343318195472 \cdot 22.0 \][/tex]
[tex]\[ v_f^2 = 22.1841 + 62.30991059634 = 84.49401060006008 \][/tex]
5. Take the square root of both sides to find the final velocity [tex]\( v_f \)[/tex]:
[tex]\[ v_f = \sqrt{84.49401060006008} \approx 9.192062369243372 \, \text{m/s} \][/tex]
Thus, the final velocity [tex]\( v_f \)[/tex] of the truck is approximately:
[tex]\[ v_f = 9.192 \, \text{m/s} (rounded to three significant digits) \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.