Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Given that [tex]\(\tan x = -\frac{8}{15}\)[/tex] and [tex]\(x\)[/tex] terminates in quadrant II, we will find [tex]\(\sin 2x\)[/tex], [tex]\(\cos 2x\)[/tex], and [tex]\(\tan 2x\)[/tex].
First, we need to determine the values of [tex]\(\sin x\)[/tex] and [tex]\(\cos x\)[/tex] based on the tangent value.
### Finding [tex]\(\cos x\)[/tex] and [tex]\(\sin x\)[/tex]:
Using the identity:
[tex]\[ 1 + \tan^2 x = \sec^2 x \][/tex]
Given [tex]\(\tan x = -\frac{8}{15}\)[/tex]:
[tex]\[ 1 + \left(-\frac{8}{15}\right)^2 = \sec^2 x \][/tex]
[tex]\[ 1 + \frac{64}{225} = \sec^2 x \][/tex]
[tex]\[ \sec^2 x = \frac{225}{225} + \frac{64}{225} = \frac{289}{225} \][/tex]
So, [tex]\(\sec x = \sqrt{\frac{289}{225}} = \frac{17}{15}\)[/tex].
Since [tex]\(\sec x = \frac{1}{\cos x}\)[/tex]:
[tex]\[ \cos x = \frac{15}{17} \][/tex]
However, since [tex]\(x\)[/tex] is in quadrant II, [tex]\(\cos x\)[/tex] is negative:
[tex]\[ \cos x = -\frac{15}{17} \][/tex]
Next, using the Pythagorean identity:
[tex]\[ \sin^2 x + \cos^2 x = 1 \][/tex]
Since we already have [tex]\(\cos x = -\frac{15}{17}\)[/tex]:
[tex]\[ \sin^2 x + \left(-\frac{15}{17}\right)^2 = 1 \][/tex]
[tex]\[ \sin^2 x + \frac{225}{289} = 1 \][/tex]
[tex]\[ \sin^2 x = 1 - \frac{225}{289} \][/tex]
[tex]\[ \sin^2 x = \frac{289}{289} - \frac{225}{289} \][/tex]
[tex]\[ \sin^2 x = \frac{64}{289} \][/tex]
Thus:
[tex]\[ \sin x = \sqrt{\frac{64}{289}} = \frac{8}{17} \][/tex]
Since [tex]\(x\)[/tex] terminates in quadrant II, [tex]\(\sin x\)[/tex] is positive:
[tex]\[ \sin x = \frac{8}{17} \][/tex]
### Finding [tex]\(\sin 2x\)[/tex] and [tex]\(\cos 2x\)[/tex]:
Using the double angle identities:
[tex]\[ \sin 2x = 2 \sin x \cos x \][/tex]
[tex]\[ \sin 2x = 2 \left(\frac{8}{17}\right) \left(-\frac{15}{17}\right) \][/tex]
[tex]\[ \sin 2x = 2 \left(-\frac{120}{289}\right) \][/tex]
[tex]\[ \sin 2x = -\frac{240}{289} \][/tex]
Next, for [tex]\(\cos 2x\)[/tex]:
[tex]\[ \cos 2x = \cos^2 x - \sin^2 x \][/tex]
[tex]\[ \cos 2x = \left(-\frac{15}{17}\right)^2 - \left(\frac{8}{17}\right)^2 \][/tex]
[tex]\[ \cos 2x = \frac{225}{289} - \frac{64}{289} \][/tex]
[tex]\[ \cos 2x = \frac{225 - 64}{289} \][/tex]
[tex]\[ \cos 2x = \frac{161}{289} \][/tex]
### Finding [tex]\(\tan 2x\)[/tex]:
Finally, using the identity:
[tex]\[ \tan 2x = \frac{\sin 2x}{\cos 2x} \][/tex]
[tex]\[ \tan 2x = \frac{-\frac{240}{289}}{\frac{161}{289}} \][/tex]
[tex]\[ \tan 2x = \frac{-240}{161} \][/tex]
Rewriting it as a simplified fraction:
[tex]\[ \tan 2x = -\frac{240}{161} \][/tex]
Thus, the values are:
[tex]\[ \sin 2x = -\frac{240}{289} \][/tex]
[tex]\[ \cos 2x = \frac{161}{289} \][/tex]
[tex]\[ \tan 2x = -\frac{240}{161} \][/tex]
First, we need to determine the values of [tex]\(\sin x\)[/tex] and [tex]\(\cos x\)[/tex] based on the tangent value.
### Finding [tex]\(\cos x\)[/tex] and [tex]\(\sin x\)[/tex]:
Using the identity:
[tex]\[ 1 + \tan^2 x = \sec^2 x \][/tex]
Given [tex]\(\tan x = -\frac{8}{15}\)[/tex]:
[tex]\[ 1 + \left(-\frac{8}{15}\right)^2 = \sec^2 x \][/tex]
[tex]\[ 1 + \frac{64}{225} = \sec^2 x \][/tex]
[tex]\[ \sec^2 x = \frac{225}{225} + \frac{64}{225} = \frac{289}{225} \][/tex]
So, [tex]\(\sec x = \sqrt{\frac{289}{225}} = \frac{17}{15}\)[/tex].
Since [tex]\(\sec x = \frac{1}{\cos x}\)[/tex]:
[tex]\[ \cos x = \frac{15}{17} \][/tex]
However, since [tex]\(x\)[/tex] is in quadrant II, [tex]\(\cos x\)[/tex] is negative:
[tex]\[ \cos x = -\frac{15}{17} \][/tex]
Next, using the Pythagorean identity:
[tex]\[ \sin^2 x + \cos^2 x = 1 \][/tex]
Since we already have [tex]\(\cos x = -\frac{15}{17}\)[/tex]:
[tex]\[ \sin^2 x + \left(-\frac{15}{17}\right)^2 = 1 \][/tex]
[tex]\[ \sin^2 x + \frac{225}{289} = 1 \][/tex]
[tex]\[ \sin^2 x = 1 - \frac{225}{289} \][/tex]
[tex]\[ \sin^2 x = \frac{289}{289} - \frac{225}{289} \][/tex]
[tex]\[ \sin^2 x = \frac{64}{289} \][/tex]
Thus:
[tex]\[ \sin x = \sqrt{\frac{64}{289}} = \frac{8}{17} \][/tex]
Since [tex]\(x\)[/tex] terminates in quadrant II, [tex]\(\sin x\)[/tex] is positive:
[tex]\[ \sin x = \frac{8}{17} \][/tex]
### Finding [tex]\(\sin 2x\)[/tex] and [tex]\(\cos 2x\)[/tex]:
Using the double angle identities:
[tex]\[ \sin 2x = 2 \sin x \cos x \][/tex]
[tex]\[ \sin 2x = 2 \left(\frac{8}{17}\right) \left(-\frac{15}{17}\right) \][/tex]
[tex]\[ \sin 2x = 2 \left(-\frac{120}{289}\right) \][/tex]
[tex]\[ \sin 2x = -\frac{240}{289} \][/tex]
Next, for [tex]\(\cos 2x\)[/tex]:
[tex]\[ \cos 2x = \cos^2 x - \sin^2 x \][/tex]
[tex]\[ \cos 2x = \left(-\frac{15}{17}\right)^2 - \left(\frac{8}{17}\right)^2 \][/tex]
[tex]\[ \cos 2x = \frac{225}{289} - \frac{64}{289} \][/tex]
[tex]\[ \cos 2x = \frac{225 - 64}{289} \][/tex]
[tex]\[ \cos 2x = \frac{161}{289} \][/tex]
### Finding [tex]\(\tan 2x\)[/tex]:
Finally, using the identity:
[tex]\[ \tan 2x = \frac{\sin 2x}{\cos 2x} \][/tex]
[tex]\[ \tan 2x = \frac{-\frac{240}{289}}{\frac{161}{289}} \][/tex]
[tex]\[ \tan 2x = \frac{-240}{161} \][/tex]
Rewriting it as a simplified fraction:
[tex]\[ \tan 2x = -\frac{240}{161} \][/tex]
Thus, the values are:
[tex]\[ \sin 2x = -\frac{240}{289} \][/tex]
[tex]\[ \cos 2x = \frac{161}{289} \][/tex]
[tex]\[ \tan 2x = -\frac{240}{161} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.