Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine which property of equality is being described, let's carefully consider the statement provided:
The Property of Equality states that for any numbers [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex], if [tex]\(a = b\)[/tex] and [tex]\(b = c\)[/tex], then [tex]\(a = c\)[/tex].
Let's examine the options:
1. Reflexive Property: This property states that any number is equal to itself. Formally, for any number [tex]\(a\)[/tex], [tex]\(a = a\)[/tex]. Clearly, this property does not deal with the relationships between three different numbers [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex].
2. Associative Property: This property typically pertains to the operations of addition and multiplication and states that the way in which numbers are grouped does not affect the result. For example, [tex]\((a + b) + c = a + (b + c)\)[/tex] and [tex]\((a \cdot b) \cdot c = a \cdot (b \cdot c)\)[/tex]. This property does not describe equality between numbers.
3. Transitive Property: This property specifically addresses the relationship among three numbers with respect to equality. It states that if [tex]\(a = b\)[/tex] and [tex]\(b = c\)[/tex], then [tex]\(a = c\)[/tex]. This is exactly what the statement in the question describes.
Thus, the correct answer is:
Transitive
The Transitive Property of Equality correctly describes the statement: for any numbers [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex], if [tex]\(a = b\)[/tex] and [tex]\(b = c\)[/tex], then [tex]\(a = c\)[/tex].
The Property of Equality states that for any numbers [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex], if [tex]\(a = b\)[/tex] and [tex]\(b = c\)[/tex], then [tex]\(a = c\)[/tex].
Let's examine the options:
1. Reflexive Property: This property states that any number is equal to itself. Formally, for any number [tex]\(a\)[/tex], [tex]\(a = a\)[/tex]. Clearly, this property does not deal with the relationships between three different numbers [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex].
2. Associative Property: This property typically pertains to the operations of addition and multiplication and states that the way in which numbers are grouped does not affect the result. For example, [tex]\((a + b) + c = a + (b + c)\)[/tex] and [tex]\((a \cdot b) \cdot c = a \cdot (b \cdot c)\)[/tex]. This property does not describe equality between numbers.
3. Transitive Property: This property specifically addresses the relationship among three numbers with respect to equality. It states that if [tex]\(a = b\)[/tex] and [tex]\(b = c\)[/tex], then [tex]\(a = c\)[/tex]. This is exactly what the statement in the question describes.
Thus, the correct answer is:
Transitive
The Transitive Property of Equality correctly describes the statement: for any numbers [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex], if [tex]\(a = b\)[/tex] and [tex]\(b = c\)[/tex], then [tex]\(a = c\)[/tex].
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.