At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To solve the system of equations using elimination, follow these steps:
Given equations:
[tex]\[ \begin{aligned} (1) & \quad -x + y = 1 \\ (2) & \quad -6x + 2y = -34 \end{aligned} \][/tex]
1. Multiply the first equation by 2 to align the coefficients of [tex]\( y \)[/tex] in both equations:
[tex]\[ 2(-x + y) = 2 \cdot 1 \implies -2x + 2y = 2 \][/tex]
Now we have the system:
[tex]\[ \begin{aligned} (1') & \quad -2x + 2y = 2 \\ (2) & \quad -6x + 2y = -34 \end{aligned} \][/tex]
2. Subtract equation [tex]\((1')\)[/tex] from equation [tex]\((2)\)[/tex]:
[tex]\[ (-6x + 2y) - (-2x + 2y) = -34 - 2 \][/tex]
[tex]\[ -6x + 2y + 2x - 2y = -34 - 2 \][/tex]
[tex]\[ -4x = -36 \][/tex]
3. Solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{-36}{-4} = 9 \][/tex]
4. Substitute [tex]\( x = 9 \)[/tex] back into the first equation to find [tex]\( y \)[/tex]:
[tex]\[ -x + y = 1 \implies -9 + y = 1 \implies y = 1 + 9 \implies y = 10 \][/tex]
Thus, the solution to the system of equations is:
[tex]\[ (x, y) = (9, 10) \][/tex]
Given equations:
[tex]\[ \begin{aligned} (1) & \quad -x + y = 1 \\ (2) & \quad -6x + 2y = -34 \end{aligned} \][/tex]
1. Multiply the first equation by 2 to align the coefficients of [tex]\( y \)[/tex] in both equations:
[tex]\[ 2(-x + y) = 2 \cdot 1 \implies -2x + 2y = 2 \][/tex]
Now we have the system:
[tex]\[ \begin{aligned} (1') & \quad -2x + 2y = 2 \\ (2) & \quad -6x + 2y = -34 \end{aligned} \][/tex]
2. Subtract equation [tex]\((1')\)[/tex] from equation [tex]\((2)\)[/tex]:
[tex]\[ (-6x + 2y) - (-2x + 2y) = -34 - 2 \][/tex]
[tex]\[ -6x + 2y + 2x - 2y = -34 - 2 \][/tex]
[tex]\[ -4x = -36 \][/tex]
3. Solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{-36}{-4} = 9 \][/tex]
4. Substitute [tex]\( x = 9 \)[/tex] back into the first equation to find [tex]\( y \)[/tex]:
[tex]\[ -x + y = 1 \implies -9 + y = 1 \implies y = 1 + 9 \implies y = 10 \][/tex]
Thus, the solution to the system of equations is:
[tex]\[ (x, y) = (9, 10) \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.