Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To find the equation that represents the approximate line of best fit for the given data, we'll use the least-squares regression method. The regression line can be represented by the equation [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope and [tex]\( b \)[/tex] is the intercept.
Given the data points:
- Font Sizes ([tex]\( x \)[/tex]): 14, 12, 16, 10, 12, 14, 16, 18, 24, 22
- Word Counts ([tex]\( y \)[/tex]): 352, 461, 340, 407, 435, 381, 280, 201, 138, 114
After calculating the line of best fit using the least-squares method, we find the slope [tex]\( m \)[/tex] and the intercept [tex]\( b \)[/tex]:
- The slope [tex]\( m \)[/tex] is approximately [tex]\( -26.059 \)[/tex]
- The intercept [tex]\( b \)[/tex] is approximately [tex]\( 722.633 \)[/tex]
Now, let us compare the given options with our calculated values:
1. [tex]\( y = -55x + 407 \)[/tex]
2. [tex]\( y = -41x + 814 \)[/tex]
3. [tex]\( y = -38x + 922 \)[/tex]
4. [tex]\( y = -26x + 723 \)[/tex]
The option that matches closest to our calculated line of best fit ([tex]\( y = -26.059x + 722.633 \)[/tex]) is clearly:
[tex]\( y = -26x + 723 \)[/tex]
Thus, the equation that best represents the approximate line of best fit for the data is:
[tex]\[ y = -26x + 723 \][/tex]
Given the data points:
- Font Sizes ([tex]\( x \)[/tex]): 14, 12, 16, 10, 12, 14, 16, 18, 24, 22
- Word Counts ([tex]\( y \)[/tex]): 352, 461, 340, 407, 435, 381, 280, 201, 138, 114
After calculating the line of best fit using the least-squares method, we find the slope [tex]\( m \)[/tex] and the intercept [tex]\( b \)[/tex]:
- The slope [tex]\( m \)[/tex] is approximately [tex]\( -26.059 \)[/tex]
- The intercept [tex]\( b \)[/tex] is approximately [tex]\( 722.633 \)[/tex]
Now, let us compare the given options with our calculated values:
1. [tex]\( y = -55x + 407 \)[/tex]
2. [tex]\( y = -41x + 814 \)[/tex]
3. [tex]\( y = -38x + 922 \)[/tex]
4. [tex]\( y = -26x + 723 \)[/tex]
The option that matches closest to our calculated line of best fit ([tex]\( y = -26.059x + 722.633 \)[/tex]) is clearly:
[tex]\( y = -26x + 723 \)[/tex]
Thus, the equation that best represents the approximate line of best fit for the data is:
[tex]\[ y = -26x + 723 \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.