Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To find the other zeros of the polynomial [tex]\( f(x) = x^3 + 7x^2 - 2x - 14 \)[/tex] given that one of the zeros is [tex]\(-7\)[/tex], we can proceed through the following steps:
1. Given Zero: We know that [tex]\( x = -7 \)[/tex] is a zero of the polynomial. This means that [tex]\( f(-7) = 0 \)[/tex].
2. Polynomial Division: Since [tex]\(-7\)[/tex] is a zero, the polynomial [tex]\( f(x) \)[/tex] can be factored as [tex]\( (x + 7) \)[/tex] times another polynomial. We need to divide [tex]\( f(x) \)[/tex] by [tex]\( (x + 7) \)[/tex] to find this other polynomial (the quotient).
3. Quotient Polynomial: On dividing [tex]\( f(x) \)[/tex] by [tex]\( (x + 7) \)[/tex], the quotient polynomial results are given as [tex]\( x^2 - 2 \)[/tex]. Therefore, [tex]\( f(x) \)[/tex] can be factored as:
[tex]\[ f(x) = (x + 7)(x^2 - 2) \][/tex]
4. Finding Remaining Zeros: The next step is to find the zeros of the quotient polynomial [tex]\( x^2 - 2 \)[/tex]. Setting [tex]\( x^2 - 2 = 0 \)[/tex], we solve for [tex]\( x \)[/tex]:
[tex]\[ x^2 - 2 = 0 \][/tex]
[tex]\[ x^2 = 2 \][/tex]
[tex]\[ x = \pm\sqrt{2} \][/tex]
Hence, the solutions to [tex]\( x^2 - 2 = 0 \)[/tex] are [tex]\( x = \sqrt{2} \)[/tex] and [tex]\( x = -\sqrt{2} \)[/tex].
5. Conclusion: In summary, the zeros of the polynomial [tex]\( f(x) = x^3 + 7x^2 - 2x - 14 \)[/tex] are [tex]\( x = -7 \)[/tex], [tex]\( x = \sqrt{2} \)[/tex], and [tex]\( x = -\sqrt{2} \)[/tex].
Therefore, the other zeros of the polynomial are [tex]\( \sqrt{2} \)[/tex] and [tex]\( -\sqrt{2} \)[/tex].
1. Given Zero: We know that [tex]\( x = -7 \)[/tex] is a zero of the polynomial. This means that [tex]\( f(-7) = 0 \)[/tex].
2. Polynomial Division: Since [tex]\(-7\)[/tex] is a zero, the polynomial [tex]\( f(x) \)[/tex] can be factored as [tex]\( (x + 7) \)[/tex] times another polynomial. We need to divide [tex]\( f(x) \)[/tex] by [tex]\( (x + 7) \)[/tex] to find this other polynomial (the quotient).
3. Quotient Polynomial: On dividing [tex]\( f(x) \)[/tex] by [tex]\( (x + 7) \)[/tex], the quotient polynomial results are given as [tex]\( x^2 - 2 \)[/tex]. Therefore, [tex]\( f(x) \)[/tex] can be factored as:
[tex]\[ f(x) = (x + 7)(x^2 - 2) \][/tex]
4. Finding Remaining Zeros: The next step is to find the zeros of the quotient polynomial [tex]\( x^2 - 2 \)[/tex]. Setting [tex]\( x^2 - 2 = 0 \)[/tex], we solve for [tex]\( x \)[/tex]:
[tex]\[ x^2 - 2 = 0 \][/tex]
[tex]\[ x^2 = 2 \][/tex]
[tex]\[ x = \pm\sqrt{2} \][/tex]
Hence, the solutions to [tex]\( x^2 - 2 = 0 \)[/tex] are [tex]\( x = \sqrt{2} \)[/tex] and [tex]\( x = -\sqrt{2} \)[/tex].
5. Conclusion: In summary, the zeros of the polynomial [tex]\( f(x) = x^3 + 7x^2 - 2x - 14 \)[/tex] are [tex]\( x = -7 \)[/tex], [tex]\( x = \sqrt{2} \)[/tex], and [tex]\( x = -\sqrt{2} \)[/tex].
Therefore, the other zeros of the polynomial are [tex]\( \sqrt{2} \)[/tex] and [tex]\( -\sqrt{2} \)[/tex].
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.