Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine the least number [tex]\( n \)[/tex] such that the [tex]\( n \)[/tex]th term of the geometric sequence is greater than the corresponding term in the arithmetic sequence, we first need to define both sequences clearly.
Arithmetic Sequence:
- First term [tex]\( a \)[/tex] is 600.
- Common difference [tex]\( d \)[/tex] is 400.
- General formula for the [tex]\( n \)[/tex]th term: [tex]\( a_n = a + (n-1)d \)[/tex].
Geometric Sequence:
- First term [tex]\( g \)[/tex] is 2.
- Common ratio [tex]\( r \)[/tex] is 2.
- General formula for the [tex]\( n \)[/tex]th term: [tex]\( g_n = g \times r^{n-1} \)[/tex].
We need to find the smallest [tex]\( n \)[/tex] such that [tex]\( g_n > a_n \)[/tex], i.e.,
[tex]\[ 2 \times 2^{n-1} > 600 + (n-1) \times 400. \][/tex]
Let's substitute the specific values for each [tex]\( n \)[/tex] to find the point where the geometric sequence term exceeds the arithmetic sequence term:
1. For [tex]\( n = 1 \)[/tex]:
[tex]\[ g_n = 2 \times 2^{0} = 2, \][/tex]
[tex]\[ a_n = 600 + (1-1) \times 400 = 600. \][/tex]
Clearly, [tex]\( 2 < 600 \)[/tex].
2. For [tex]\( n = 2 \)[/tex]:
[tex]\[ g_n = 2 \times 2^{1} = 4, \][/tex]
[tex]\[ a_n = 600 + (2-1) \times 400 = 1000. \][/tex]
Clearly, [tex]\( 4 < 1000 \)[/tex].
3. For [tex]\( n = 3 \)[/tex]:
[tex]\[ g_n = 2 \times 2^{2} = 8, \][/tex]
[tex]\[ a_n = 600 + (3-1) \times 400 = 1400. \][/tex]
Clearly, [tex]\( 8 < 1400 \)[/tex].
4. For [tex]\( n = 4 \)[/tex]:
[tex]\[ g_n = 2 \times 2^{3} = 16, \][/tex]
[tex]\[ a_n = 600 + (4-1) \times 400 = 1800. \][/tex]
Clearly, [tex]\( 16 < 1800 \)[/tex].
5. For [tex]\( n = 5 \)[/tex]:
[tex]\[ g_n = 2 \times 2^{4} = 32, \][/tex]
[tex]\[ a_n = 600 + (5-1) \times 400 = 2200. \][/tex]
Clearly, [tex]\( 32 < 2200 \)[/tex].
6. For [tex]\( n = 6 \)[/tex]:
[tex]\[ g_n = 2 \times 2^{5} = 64, \][/tex]
[tex]\[ a_n = 600 + (6-1) \times 400 = 2600. \][/tex]
Clearly, [tex]\( 64 < 2600 \)[/tex].
7. For [tex]\( n = 7 \)[/tex]:
[tex]\[ g_n = 2 \times 2^{6} = 128, \][/tex]
[tex]\[ a_n = 600 + (7-1) \times 400 = 3000. \][/tex]
Clearly, [tex]\( 128 < 3000 \)[/tex].
8. For [tex]\( n = 8 \)[/tex]:
[tex]\[ g_n = 2 \times 2^{7} = 256, \][/tex]
[tex]\[ a_n = 600 + (8-1) \times 400 = 3400. \][/tex]
Clearly, [tex]\( 256 < 3400 \)[/tex].
9. For [tex]\( n = 9 \)[/tex]:
[tex]\[ g_n = 2 \times 2^{8} = 512, \][/tex]
[tex]\[ a_n = 600 + (9-1) \times 400 = 3800. \][/tex]
Clearly, [tex]\( 512 < 3800 \)[/tex].
10. For [tex]\( n = 10 \)[/tex]:
[tex]\[ g_n = 2 \times 2^{9} = 1024, \][/tex]
[tex]\[ a_n = 600 + (10-1) \times 400 = 4200. \][/tex]
Clearly, [tex]\( 1024 < 4200 \)[/tex].
11. For [tex]\( n = 11 \)[/tex]:
[tex]\[ g_n = 2 \times 2^{10} = 2048, \][/tex]
[tex]\[ a_n = 600 + (11-1) \times 400 = 4600. \][/tex]
Clearly, [tex]\( 2048 < 4600 \)[/tex].
12. For [tex]\( n = 12 \)[/tex]:
[tex]\[ g_n = 2 \times 2^{11} = 4096, \][/tex]
[tex]\[ a_n = 600 + (12-1) \times 400 = 5000. \][/tex]
Clearly, [tex]\( 4096 < 5000 \)[/tex].
13. For [tex]\( n = 13 \)[/tex]:
[tex]\[ g_n = 2 \times 2^{12} = 8192, \][/tex]
[tex]\[ a_n = 600 + (13-1) \times 400 = 5400. \][/tex]
Now, [tex]\( 8192 > 5400 \)[/tex].
Therefore, the least number [tex]\( n \)[/tex] such that the [tex]\( n \)[/tex]th term of the geometric sequence is greater than the corresponding term in the arithmetic sequence is [tex]\( n = 13 \)[/tex].
Arithmetic Sequence:
- First term [tex]\( a \)[/tex] is 600.
- Common difference [tex]\( d \)[/tex] is 400.
- General formula for the [tex]\( n \)[/tex]th term: [tex]\( a_n = a + (n-1)d \)[/tex].
Geometric Sequence:
- First term [tex]\( g \)[/tex] is 2.
- Common ratio [tex]\( r \)[/tex] is 2.
- General formula for the [tex]\( n \)[/tex]th term: [tex]\( g_n = g \times r^{n-1} \)[/tex].
We need to find the smallest [tex]\( n \)[/tex] such that [tex]\( g_n > a_n \)[/tex], i.e.,
[tex]\[ 2 \times 2^{n-1} > 600 + (n-1) \times 400. \][/tex]
Let's substitute the specific values for each [tex]\( n \)[/tex] to find the point where the geometric sequence term exceeds the arithmetic sequence term:
1. For [tex]\( n = 1 \)[/tex]:
[tex]\[ g_n = 2 \times 2^{0} = 2, \][/tex]
[tex]\[ a_n = 600 + (1-1) \times 400 = 600. \][/tex]
Clearly, [tex]\( 2 < 600 \)[/tex].
2. For [tex]\( n = 2 \)[/tex]:
[tex]\[ g_n = 2 \times 2^{1} = 4, \][/tex]
[tex]\[ a_n = 600 + (2-1) \times 400 = 1000. \][/tex]
Clearly, [tex]\( 4 < 1000 \)[/tex].
3. For [tex]\( n = 3 \)[/tex]:
[tex]\[ g_n = 2 \times 2^{2} = 8, \][/tex]
[tex]\[ a_n = 600 + (3-1) \times 400 = 1400. \][/tex]
Clearly, [tex]\( 8 < 1400 \)[/tex].
4. For [tex]\( n = 4 \)[/tex]:
[tex]\[ g_n = 2 \times 2^{3} = 16, \][/tex]
[tex]\[ a_n = 600 + (4-1) \times 400 = 1800. \][/tex]
Clearly, [tex]\( 16 < 1800 \)[/tex].
5. For [tex]\( n = 5 \)[/tex]:
[tex]\[ g_n = 2 \times 2^{4} = 32, \][/tex]
[tex]\[ a_n = 600 + (5-1) \times 400 = 2200. \][/tex]
Clearly, [tex]\( 32 < 2200 \)[/tex].
6. For [tex]\( n = 6 \)[/tex]:
[tex]\[ g_n = 2 \times 2^{5} = 64, \][/tex]
[tex]\[ a_n = 600 + (6-1) \times 400 = 2600. \][/tex]
Clearly, [tex]\( 64 < 2600 \)[/tex].
7. For [tex]\( n = 7 \)[/tex]:
[tex]\[ g_n = 2 \times 2^{6} = 128, \][/tex]
[tex]\[ a_n = 600 + (7-1) \times 400 = 3000. \][/tex]
Clearly, [tex]\( 128 < 3000 \)[/tex].
8. For [tex]\( n = 8 \)[/tex]:
[tex]\[ g_n = 2 \times 2^{7} = 256, \][/tex]
[tex]\[ a_n = 600 + (8-1) \times 400 = 3400. \][/tex]
Clearly, [tex]\( 256 < 3400 \)[/tex].
9. For [tex]\( n = 9 \)[/tex]:
[tex]\[ g_n = 2 \times 2^{8} = 512, \][/tex]
[tex]\[ a_n = 600 + (9-1) \times 400 = 3800. \][/tex]
Clearly, [tex]\( 512 < 3800 \)[/tex].
10. For [tex]\( n = 10 \)[/tex]:
[tex]\[ g_n = 2 \times 2^{9} = 1024, \][/tex]
[tex]\[ a_n = 600 + (10-1) \times 400 = 4200. \][/tex]
Clearly, [tex]\( 1024 < 4200 \)[/tex].
11. For [tex]\( n = 11 \)[/tex]:
[tex]\[ g_n = 2 \times 2^{10} = 2048, \][/tex]
[tex]\[ a_n = 600 + (11-1) \times 400 = 4600. \][/tex]
Clearly, [tex]\( 2048 < 4600 \)[/tex].
12. For [tex]\( n = 12 \)[/tex]:
[tex]\[ g_n = 2 \times 2^{11} = 4096, \][/tex]
[tex]\[ a_n = 600 + (12-1) \times 400 = 5000. \][/tex]
Clearly, [tex]\( 4096 < 5000 \)[/tex].
13. For [tex]\( n = 13 \)[/tex]:
[tex]\[ g_n = 2 \times 2^{12} = 8192, \][/tex]
[tex]\[ a_n = 600 + (13-1) \times 400 = 5400. \][/tex]
Now, [tex]\( 8192 > 5400 \)[/tex].
Therefore, the least number [tex]\( n \)[/tex] such that the [tex]\( n \)[/tex]th term of the geometric sequence is greater than the corresponding term in the arithmetic sequence is [tex]\( n = 13 \)[/tex].
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.