Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine which polynomial is in standard form, we need to check if the terms are arranged in decreasing order of their degrees.
Let's analyze each polynomial:
1. [tex]\( 12x - 14x^4 + 11x^5 \)[/tex]
- The terms are [tex]\( 12x \)[/tex] (degree 1), [tex]\( -14x^4 \)[/tex] (degree 4), and [tex]\( 11x^5 \)[/tex] (degree 5).
- Their degrees are [tex]\( 1, 4, \)[/tex] and [tex]\( 5 \)[/tex].
- In standard form, the degrees should be in descending order. These terms are not in descending order since [tex]\( 1 < 4 < 5 \)[/tex].
2. [tex]\( -6x - 3x^2 + 2 \)[/tex]
- The terms are [tex]\( -6x \)[/tex] (degree 1), [tex]\( -3x^2 \)[/tex] (degree 2), and [tex]\( 2 \)[/tex] (degree 0).
- Their degrees are [tex]\( 1, 2, \)[/tex] and [tex]\( 0 \)[/tex].
- To be in descending order, we should have [tex]\( 2, 1, \)[/tex] and [tex]\( 0 \)[/tex]. This polynomial is not in descending order since [tex]\( 1, 2, \)[/tex] and [tex]\( 0 \)[/tex] do not follow this order.
3. [tex]\( 11x^3 - 6x^2 + 5x \)[/tex]
- The terms are [tex]\( 11x^3 \)[/tex] (degree 3), [tex]\( -6x^2 \)[/tex] (degree 2), and [tex]\( 5x \)[/tex] (degree 1).
- Their degrees are [tex]\( 3, 2, \)[/tex] and [tex]\( 1 \)[/tex].
- These degrees are indeed in descending order [tex]\( 3 > 2 > 1 \)[/tex]. So this polynomial is in standard form.
4. [tex]\( 14x^9 + 15x^{12} + 17 \)[/tex]
- The terms are [tex]\( 14x^9 \)[/tex] (degree 9), [tex]\( 15x^{12} \)[/tex] (degree 12), and [tex]\( 17 \)[/tex] (degree 0).
- Their degrees are [tex]\( 9, 12, \)[/tex] and [tex]\( 0 \)[/tex].
- To be in standard form, the degrees should be [tex]\( 12 > 9 > 0 \)[/tex]. These terms do not follow this order since [tex]\( 9 < 12 \)[/tex].
Among the given polynomials, the only one that meets the criteria of being in standard form (arranged in descending order of degrees) is option 3, [tex]\( 11x^3 - 6x^2 + 5x \)[/tex].
Thus, the polynomial in standard form is the 3rd polynomial.
Let's analyze each polynomial:
1. [tex]\( 12x - 14x^4 + 11x^5 \)[/tex]
- The terms are [tex]\( 12x \)[/tex] (degree 1), [tex]\( -14x^4 \)[/tex] (degree 4), and [tex]\( 11x^5 \)[/tex] (degree 5).
- Their degrees are [tex]\( 1, 4, \)[/tex] and [tex]\( 5 \)[/tex].
- In standard form, the degrees should be in descending order. These terms are not in descending order since [tex]\( 1 < 4 < 5 \)[/tex].
2. [tex]\( -6x - 3x^2 + 2 \)[/tex]
- The terms are [tex]\( -6x \)[/tex] (degree 1), [tex]\( -3x^2 \)[/tex] (degree 2), and [tex]\( 2 \)[/tex] (degree 0).
- Their degrees are [tex]\( 1, 2, \)[/tex] and [tex]\( 0 \)[/tex].
- To be in descending order, we should have [tex]\( 2, 1, \)[/tex] and [tex]\( 0 \)[/tex]. This polynomial is not in descending order since [tex]\( 1, 2, \)[/tex] and [tex]\( 0 \)[/tex] do not follow this order.
3. [tex]\( 11x^3 - 6x^2 + 5x \)[/tex]
- The terms are [tex]\( 11x^3 \)[/tex] (degree 3), [tex]\( -6x^2 \)[/tex] (degree 2), and [tex]\( 5x \)[/tex] (degree 1).
- Their degrees are [tex]\( 3, 2, \)[/tex] and [tex]\( 1 \)[/tex].
- These degrees are indeed in descending order [tex]\( 3 > 2 > 1 \)[/tex]. So this polynomial is in standard form.
4. [tex]\( 14x^9 + 15x^{12} + 17 \)[/tex]
- The terms are [tex]\( 14x^9 \)[/tex] (degree 9), [tex]\( 15x^{12} \)[/tex] (degree 12), and [tex]\( 17 \)[/tex] (degree 0).
- Their degrees are [tex]\( 9, 12, \)[/tex] and [tex]\( 0 \)[/tex].
- To be in standard form, the degrees should be [tex]\( 12 > 9 > 0 \)[/tex]. These terms do not follow this order since [tex]\( 9 < 12 \)[/tex].
Among the given polynomials, the only one that meets the criteria of being in standard form (arranged in descending order of degrees) is option 3, [tex]\( 11x^3 - 6x^2 + 5x \)[/tex].
Thus, the polynomial in standard form is the 3rd polynomial.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.