Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To solve this problem, let's break it down step-by-step:
1. Understand the initial conditions and growth rate:
- The initial number of toys produced each year is [tex]\(1,250,000\)[/tex].
- This quantity increases by 150% each year.
2. Convert the initial quantity into millions:
- Since [tex]\(1,250,000\)[/tex] toys are produced, in terms of millions, this is [tex]\( \frac{1,250,000}{1,000,000} = 1.25 \)[/tex] million toys.
3. Determine the growth factor:
- The increase of 150% per year means the number of toys grows by 1.5 times the initial quantity each year, in addition to the initial quantity itself.
- Thus, adding the initial quantity, the growth factor is [tex]\( 1 + 1.5 = 2.5 \)[/tex].
4. Formulate the exponential growth model:
- In exponential growth, the quantity increases by a constant factor each year.
- The general form of an exponential growth equation is [tex]\( n = n_{\text{initial}} \times (\text{growth factor})^t \)[/tex], where [tex]\( t \)[/tex] is the number of years.
- Here, [tex]\( n_{\text{initial}} \)[/tex] is [tex]\(1.25\)[/tex] million and the growth factor is [tex]\(2.5\)[/tex].
Thus, substituting the values:
[tex]\[ n = 1.25 \cdot 2.5^t \][/tex]
5. Evaluate the given options:
- [tex]\( n=\frac{2.5(1.5)}{t}, t \neq 0 \)[/tex] is not a correct format and doesn’t properly represent exponential growth.
- [tex]\( n=1.5 t^2+1.25 \)[/tex] represents quadratic growth, not suitable for our scenario.
- [tex]\( n=1.5 t+1.25 \)[/tex] represents linear growth, not suitable for exponential increase.
- [tex]\( n=1.25 \cdot 2.5^t \)[/tex] represents exponential growth and matches our derived formula. This is the correct model.
Therefore, the correct model to find the number of toys, [tex]\( n \)[/tex] (in millions), being produced in [tex]\( t \)[/tex] years is:
[tex]\[ n = 1.25 \cdot 2.5^t \][/tex]
1. Understand the initial conditions and growth rate:
- The initial number of toys produced each year is [tex]\(1,250,000\)[/tex].
- This quantity increases by 150% each year.
2. Convert the initial quantity into millions:
- Since [tex]\(1,250,000\)[/tex] toys are produced, in terms of millions, this is [tex]\( \frac{1,250,000}{1,000,000} = 1.25 \)[/tex] million toys.
3. Determine the growth factor:
- The increase of 150% per year means the number of toys grows by 1.5 times the initial quantity each year, in addition to the initial quantity itself.
- Thus, adding the initial quantity, the growth factor is [tex]\( 1 + 1.5 = 2.5 \)[/tex].
4. Formulate the exponential growth model:
- In exponential growth, the quantity increases by a constant factor each year.
- The general form of an exponential growth equation is [tex]\( n = n_{\text{initial}} \times (\text{growth factor})^t \)[/tex], where [tex]\( t \)[/tex] is the number of years.
- Here, [tex]\( n_{\text{initial}} \)[/tex] is [tex]\(1.25\)[/tex] million and the growth factor is [tex]\(2.5\)[/tex].
Thus, substituting the values:
[tex]\[ n = 1.25 \cdot 2.5^t \][/tex]
5. Evaluate the given options:
- [tex]\( n=\frac{2.5(1.5)}{t}, t \neq 0 \)[/tex] is not a correct format and doesn’t properly represent exponential growth.
- [tex]\( n=1.5 t^2+1.25 \)[/tex] represents quadratic growth, not suitable for our scenario.
- [tex]\( n=1.5 t+1.25 \)[/tex] represents linear growth, not suitable for exponential increase.
- [tex]\( n=1.25 \cdot 2.5^t \)[/tex] represents exponential growth and matches our derived formula. This is the correct model.
Therefore, the correct model to find the number of toys, [tex]\( n \)[/tex] (in millions), being produced in [tex]\( t \)[/tex] years is:
[tex]\[ n = 1.25 \cdot 2.5^t \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.