Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Alright, let's solve the given problem step-by-step.
We are given the expression:
[tex]\[ \sqrt{2} \cdot \sqrt{8} \cdot \sqrt{4} \][/tex]
First, let's simplify the square roots involved:
1. Simplifying [tex]\(\sqrt{8}\)[/tex]:
[tex]\[ \sqrt{8} = \sqrt{4 \cdot 2} = \sqrt{4} \cdot \sqrt{2} = 2\sqrt{2} \][/tex]
2. Simplifying [tex]\(\sqrt{4}\)[/tex]:
[tex]\[ \sqrt{4} = 2 \][/tex]
Now, substituting these simplified forms back into the given expression:
[tex]\[ \sqrt{2} \cdot \sqrt{8} \cdot \sqrt{4} = \sqrt{2} \cdot (2\sqrt{2}) \cdot 2 \][/tex]
Next, let's perform the multiplication step-by-step:
1. Multiply [tex]\(\sqrt{2}\)[/tex] and [tex]\(2\sqrt{2}\)[/tex]:
[tex]\[ \sqrt{2} \cdot 2\sqrt{2} = 2 (\sqrt{2} \cdot \sqrt{2}) = 2 \cdot 2 = 4 \][/tex]
2. Now, multiply the result by 2:
[tex]\[ 4 \cdot 2 = 8 \][/tex]
So, the simplified expression is:
[tex]\[ \sqrt{2} \cdot \sqrt{8} \cdot \sqrt{4} = 8 \][/tex]
Therefore, the correct choice is:
[tex]\[ \boxed{8} \][/tex]
So the answer is choice C.
We are given the expression:
[tex]\[ \sqrt{2} \cdot \sqrt{8} \cdot \sqrt{4} \][/tex]
First, let's simplify the square roots involved:
1. Simplifying [tex]\(\sqrt{8}\)[/tex]:
[tex]\[ \sqrt{8} = \sqrt{4 \cdot 2} = \sqrt{4} \cdot \sqrt{2} = 2\sqrt{2} \][/tex]
2. Simplifying [tex]\(\sqrt{4}\)[/tex]:
[tex]\[ \sqrt{4} = 2 \][/tex]
Now, substituting these simplified forms back into the given expression:
[tex]\[ \sqrt{2} \cdot \sqrt{8} \cdot \sqrt{4} = \sqrt{2} \cdot (2\sqrt{2}) \cdot 2 \][/tex]
Next, let's perform the multiplication step-by-step:
1. Multiply [tex]\(\sqrt{2}\)[/tex] and [tex]\(2\sqrt{2}\)[/tex]:
[tex]\[ \sqrt{2} \cdot 2\sqrt{2} = 2 (\sqrt{2} \cdot \sqrt{2}) = 2 \cdot 2 = 4 \][/tex]
2. Now, multiply the result by 2:
[tex]\[ 4 \cdot 2 = 8 \][/tex]
So, the simplified expression is:
[tex]\[ \sqrt{2} \cdot \sqrt{8} \cdot \sqrt{4} = 8 \][/tex]
Therefore, the correct choice is:
[tex]\[ \boxed{8} \][/tex]
So the answer is choice C.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.