Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the equivalent expression for the product [tex]\(\sqrt{6} \cdot \sqrt{3}\)[/tex], let's work through it step by step.
1. First, we know that the product of two square roots can be combined under a single square root:
[tex]\[ \sqrt{6} \cdot \sqrt{3} = \sqrt{6 \cdot 3} \][/tex]
2. Next, calculate the product inside the square root:
[tex]\[ 6 \cdot 3 = 18 \][/tex]
So the expression is now:
[tex]\[ \sqrt{6} \cdot \sqrt{3} = \sqrt{18} \][/tex]
3. Now, simplify the square root of 18. We do this by factoring 18 into its prime factors:
[tex]\[ 18 = 9 \cdot 2 \][/tex]
4. We know that [tex]\(\sqrt{9 \cdot 2}\)[/tex] can be split into the product of two square roots:
[tex]\[ \sqrt{18} = \sqrt{9 \cdot 2} = \sqrt{9} \cdot \sqrt{2} \][/tex]
5. Simplify [tex]\(\sqrt{9}\)[/tex], since [tex]\(9\)[/tex] is a perfect square:
[tex]\[ \sqrt{9} = 3 \][/tex]
6. Therefore, we have:
[tex]\[ \sqrt{18} = 3 \cdot \sqrt{2} \][/tex]
Thus, the expression [tex]\(\sqrt{6} \cdot \sqrt{3}\)[/tex] simplifies to:
[tex]\[ 3 \sqrt{2} \][/tex]
Therefore, the correct choice is:
B. [tex]\(3 \sqrt{2}\)[/tex]
1. First, we know that the product of two square roots can be combined under a single square root:
[tex]\[ \sqrt{6} \cdot \sqrt{3} = \sqrt{6 \cdot 3} \][/tex]
2. Next, calculate the product inside the square root:
[tex]\[ 6 \cdot 3 = 18 \][/tex]
So the expression is now:
[tex]\[ \sqrt{6} \cdot \sqrt{3} = \sqrt{18} \][/tex]
3. Now, simplify the square root of 18. We do this by factoring 18 into its prime factors:
[tex]\[ 18 = 9 \cdot 2 \][/tex]
4. We know that [tex]\(\sqrt{9 \cdot 2}\)[/tex] can be split into the product of two square roots:
[tex]\[ \sqrt{18} = \sqrt{9 \cdot 2} = \sqrt{9} \cdot \sqrt{2} \][/tex]
5. Simplify [tex]\(\sqrt{9}\)[/tex], since [tex]\(9\)[/tex] is a perfect square:
[tex]\[ \sqrt{9} = 3 \][/tex]
6. Therefore, we have:
[tex]\[ \sqrt{18} = 3 \cdot \sqrt{2} \][/tex]
Thus, the expression [tex]\(\sqrt{6} \cdot \sqrt{3}\)[/tex] simplifies to:
[tex]\[ 3 \sqrt{2} \][/tex]
Therefore, the correct choice is:
B. [tex]\(3 \sqrt{2}\)[/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.