Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Ask your questions and receive precise answers from experienced professionals across different disciplines. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To solve for [tex]\(\sqrt{c^2}\)[/tex] for any real number [tex]\(c\)[/tex], let's carefully analyze the expression.
1. Understand the Meaning:
- The expression [tex]\(c^2\)[/tex] represents [tex]\(c\)[/tex] squared, which means [tex]\(c\)[/tex] multiplied by itself.
- The square root function, denoted [tex]\(\sqrt{\ \ }\)[/tex], returns the principal (non-negative) square root of its argument.
2. Simplify the Expression:
- Since [tex]\(c^2\)[/tex] is always non-negative (as any real number squared is non-negative), we are looking for the non-negative number that, when squared, results in [tex]\(c^2\)[/tex].
3. Square Root and Absolute Value Relationship:
- The square root of [tex]\(c^2\)[/tex] gives a non-negative result, which corresponds to the absolute value of [tex]\(c\)[/tex].
- This can be understood as follows: [tex]\(\sqrt{c^2} = |c|\)[/tex] because the absolute value of [tex]\(c\)[/tex] is defined as:
[tex]\[ |c| = \begin{cases} c & \text{if } c \geq 0 \\ -c & \text{if } c < 0 \end{cases} \][/tex]
- For any [tex]\(c \geq 0\)[/tex], [tex]\(\sqrt{c^2} = c\)[/tex].
- For any [tex]\(c < 0\)[/tex], [tex]\(\sqrt{c^2} = -c\)[/tex] (which is positive).
So, the correct answer is [tex]\(|c|\)[/tex].
Thus,
[tex]\[ \sqrt{c^2} = |c| \][/tex]
The answer is [tex]\(\boxed{|c|}\)[/tex], which corresponds to option C.
1. Understand the Meaning:
- The expression [tex]\(c^2\)[/tex] represents [tex]\(c\)[/tex] squared, which means [tex]\(c\)[/tex] multiplied by itself.
- The square root function, denoted [tex]\(\sqrt{\ \ }\)[/tex], returns the principal (non-negative) square root of its argument.
2. Simplify the Expression:
- Since [tex]\(c^2\)[/tex] is always non-negative (as any real number squared is non-negative), we are looking for the non-negative number that, when squared, results in [tex]\(c^2\)[/tex].
3. Square Root and Absolute Value Relationship:
- The square root of [tex]\(c^2\)[/tex] gives a non-negative result, which corresponds to the absolute value of [tex]\(c\)[/tex].
- This can be understood as follows: [tex]\(\sqrt{c^2} = |c|\)[/tex] because the absolute value of [tex]\(c\)[/tex] is defined as:
[tex]\[ |c| = \begin{cases} c & \text{if } c \geq 0 \\ -c & \text{if } c < 0 \end{cases} \][/tex]
- For any [tex]\(c \geq 0\)[/tex], [tex]\(\sqrt{c^2} = c\)[/tex].
- For any [tex]\(c < 0\)[/tex], [tex]\(\sqrt{c^2} = -c\)[/tex] (which is positive).
So, the correct answer is [tex]\(|c|\)[/tex].
Thus,
[tex]\[ \sqrt{c^2} = |c| \][/tex]
The answer is [tex]\(\boxed{|c|}\)[/tex], which corresponds to option C.
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.