Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To solve this problem, let's consider the situation where the velocity vector [tex]\( v \)[/tex] is equally inclined to the negative directions of both the [tex]\( x \)[/tex]-axis and the [tex]\( y \)[/tex]-axis.
The velocity vector [tex]\( \vec{v} \)[/tex] can be resolved into components along the [tex]\( x \)[/tex] and [tex]\( y \)[/tex] axes. Since it is equally inclined, the angle with each axis is [tex]\( 45^\circ \)[/tex].
Given:
[tex]\[ v = 5.00 \ \text{meters/second} \][/tex]
1. We know the vector is equally inclined to both axes, meaning it makes an angle of [tex]\( 45^\circ \)[/tex] with each axis. In such cases, the components of [tex]\( v \)[/tex] along the [tex]\( x \)[/tex] and [tex]\( y \)[/tex] directions ([tex]\( v_x \)[/tex] and [tex]\( v_y \)[/tex]) will have equal magnitudes but negative signs because they are in the negative directions.
2. The components of the velocity vector [tex]\( v \)[/tex] along the [tex]\( x \)[/tex] and [tex]\( y \)[/tex] axes can be found using trigonometric relations for a [tex]\( 45^\circ \)[/tex] angle:
[tex]\[ v_x = v \cos(45^\circ) \][/tex]
[tex]\[ v_y = v \cos(45^\circ) \][/tex]
Since [tex]\( \cos(45^\circ) = \frac{1}{\sqrt{2}} \)[/tex]:
[tex]\[ v_x = v \cdot \frac{1}{\sqrt{2}} \][/tex]
[tex]\[ v_y = v \cdot \frac{1}{\sqrt{2}} \][/tex]
3. Substituting the value of [tex]\( v = 5.00 \ \text{meters/second} \)[/tex]:
[tex]\[ v_y = 5.00 \cdot \frac{1}{\sqrt{2}} \][/tex]
[tex]\[ v_y = 5.00 \cdot \frac{\sqrt{2}}{2} \][/tex]
Simplifying the expression:
[tex]\[ v_y = 5.00 \cdot \frac{\sqrt{2}}{2} = 5.00 \cdot 0.7071 = 3.5355339059327378 \][/tex]
Since the vector is in the negative [tex]\( y \)[/tex]-direction:
[tex]\[ v_y = -3.5355339059327378 \ \text{meters/second} \][/tex]
Hence, the correct answer is:
A. -3.53 meters/second
The velocity vector [tex]\( \vec{v} \)[/tex] can be resolved into components along the [tex]\( x \)[/tex] and [tex]\( y \)[/tex] axes. Since it is equally inclined, the angle with each axis is [tex]\( 45^\circ \)[/tex].
Given:
[tex]\[ v = 5.00 \ \text{meters/second} \][/tex]
1. We know the vector is equally inclined to both axes, meaning it makes an angle of [tex]\( 45^\circ \)[/tex] with each axis. In such cases, the components of [tex]\( v \)[/tex] along the [tex]\( x \)[/tex] and [tex]\( y \)[/tex] directions ([tex]\( v_x \)[/tex] and [tex]\( v_y \)[/tex]) will have equal magnitudes but negative signs because they are in the negative directions.
2. The components of the velocity vector [tex]\( v \)[/tex] along the [tex]\( x \)[/tex] and [tex]\( y \)[/tex] axes can be found using trigonometric relations for a [tex]\( 45^\circ \)[/tex] angle:
[tex]\[ v_x = v \cos(45^\circ) \][/tex]
[tex]\[ v_y = v \cos(45^\circ) \][/tex]
Since [tex]\( \cos(45^\circ) = \frac{1}{\sqrt{2}} \)[/tex]:
[tex]\[ v_x = v \cdot \frac{1}{\sqrt{2}} \][/tex]
[tex]\[ v_y = v \cdot \frac{1}{\sqrt{2}} \][/tex]
3. Substituting the value of [tex]\( v = 5.00 \ \text{meters/second} \)[/tex]:
[tex]\[ v_y = 5.00 \cdot \frac{1}{\sqrt{2}} \][/tex]
[tex]\[ v_y = 5.00 \cdot \frac{\sqrt{2}}{2} \][/tex]
Simplifying the expression:
[tex]\[ v_y = 5.00 \cdot \frac{\sqrt{2}}{2} = 5.00 \cdot 0.7071 = 3.5355339059327378 \][/tex]
Since the vector is in the negative [tex]\( y \)[/tex]-direction:
[tex]\[ v_y = -3.5355339059327378 \ \text{meters/second} \][/tex]
Hence, the correct answer is:
A. -3.53 meters/second
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.