Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the end behavior of the function [tex]\( f(x) = 3|x-7| - 7 \)[/tex], we need to consider what happens to the function as [tex]\( x \)[/tex] approaches positive infinity and negative infinity.
1. As [tex]\( x \)[/tex] approaches positive infinity:
When [tex]\( x \)[/tex] is very large and positive, the expression [tex]\( |x-7| \)[/tex] simplifies to [tex]\( x-7 \)[/tex] because the absolute value of a large positive number remains positive.
So, [tex]\( f(x) = 3|x-7| - 7 \)[/tex] becomes:
[tex]\[ f(x) = 3(x-7) - 7 \][/tex]
Simplify this expression:
[tex]\[ f(x) = 3x - 21 - 7 \][/tex]
[tex]\[ f(x) = 3x - 28 \][/tex]
As [tex]\( x \)[/tex] approaches positive infinity, the term [tex]\( 3x \)[/tex] will dominate, causing [tex]\( f(x) \)[/tex] to also approach positive infinity.
2. As [tex]\( x \)[/tex] approaches negative infinity:
When [tex]\( x \)[/tex] is very large and negative, the expression [tex]\( |x-7| \)[/tex] simplifies to [tex]\( -(x-7) \)[/tex] because the absolute value of a large negative number becomes positive when you take the negative of it.
So, [tex]\( f(x) = 3|x-7| - 7 \)[/tex] becomes:
[tex]\[ f(x) = 3(-(x-7)) - 7 \][/tex]
Simplify this expression:
[tex]\[ f(x) = 3(-x + 7) - 7 \][/tex]
[tex]\[ f(x) = -3x + 21 - 7 \][/tex]
[tex]\[ f(x) = -3x + 14 \][/tex]
As [tex]\( x \)[/tex] approaches negative infinity, the term [tex]\( -3x \)[/tex] will dominate, causing [tex]\( f(x) \)[/tex] to approach negative infinity.
Based on this analysis, we can conclude:
- As [tex]\( x \)[/tex] approaches negative infinity, [tex]\( f(x) \)[/tex] approaches negative infinity.
- As [tex]\( x \)[/tex] approaches positive infinity, [tex]\( f(x) \)[/tex] approaches positive infinity.
Therefore, the correct answer is:
A. As [tex]\( x \)[/tex] approaches negative infinity, [tex]\( f(x) \)[/tex] approaches negative infinity.
1. As [tex]\( x \)[/tex] approaches positive infinity:
When [tex]\( x \)[/tex] is very large and positive, the expression [tex]\( |x-7| \)[/tex] simplifies to [tex]\( x-7 \)[/tex] because the absolute value of a large positive number remains positive.
So, [tex]\( f(x) = 3|x-7| - 7 \)[/tex] becomes:
[tex]\[ f(x) = 3(x-7) - 7 \][/tex]
Simplify this expression:
[tex]\[ f(x) = 3x - 21 - 7 \][/tex]
[tex]\[ f(x) = 3x - 28 \][/tex]
As [tex]\( x \)[/tex] approaches positive infinity, the term [tex]\( 3x \)[/tex] will dominate, causing [tex]\( f(x) \)[/tex] to also approach positive infinity.
2. As [tex]\( x \)[/tex] approaches negative infinity:
When [tex]\( x \)[/tex] is very large and negative, the expression [tex]\( |x-7| \)[/tex] simplifies to [tex]\( -(x-7) \)[/tex] because the absolute value of a large negative number becomes positive when you take the negative of it.
So, [tex]\( f(x) = 3|x-7| - 7 \)[/tex] becomes:
[tex]\[ f(x) = 3(-(x-7)) - 7 \][/tex]
Simplify this expression:
[tex]\[ f(x) = 3(-x + 7) - 7 \][/tex]
[tex]\[ f(x) = -3x + 21 - 7 \][/tex]
[tex]\[ f(x) = -3x + 14 \][/tex]
As [tex]\( x \)[/tex] approaches negative infinity, the term [tex]\( -3x \)[/tex] will dominate, causing [tex]\( f(x) \)[/tex] to approach negative infinity.
Based on this analysis, we can conclude:
- As [tex]\( x \)[/tex] approaches negative infinity, [tex]\( f(x) \)[/tex] approaches negative infinity.
- As [tex]\( x \)[/tex] approaches positive infinity, [tex]\( f(x) \)[/tex] approaches positive infinity.
Therefore, the correct answer is:
A. As [tex]\( x \)[/tex] approaches negative infinity, [tex]\( f(x) \)[/tex] approaches negative infinity.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.