Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

Which table represents points on the graph of [tex][tex]$h(x)=\sqrt[3]{-x+2}$[/tex][/tex]?

\begin{tabular}{|c|c|c|c|c|c|}
\hline [tex]$x$[/tex] & -8 & -1 & 0 & 1 & 8 \\
\hline [tex]$y$[/tex] & 4 & 3 & 2 & 1 & 0 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline [tex]$x$[/tex] & -2 & -1 & 0 & 1 & 2 \\
\hline [tex]$y$[/tex] & 10 & 3 & 2 & 1 & -6 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline [tex]$x$[/tex] & -6 & 1 & 2 & 3 & 10 \\
\hline [tex]$y$[/tex] & 2 & 1 & 0 & -1 & -2 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline [tex]$x$[/tex] & -4 & -3 & -2 & -1 & 0 \\
\hline [tex]$y$[/tex] & -8 & -1 & 0 & 1 & 8 \\
\hline
\end{tabular}


Sagot :

To determine which table contains points that lie on the graph of the function [tex]\( h(x) = \sqrt[3]{-x + 2} \)[/tex], we can substitute each [tex]\( x \)[/tex] value from each table into the function [tex]\( h(x) \)[/tex] and compare the results with the corresponding [tex]\( y \)[/tex] values. Let's go through each table one by one and perform these calculations.

### Table 1

For [tex]\( x = -8 \)[/tex], [tex]\( y = 4 \)[/tex]:
[tex]\[ h(-8) = \sqrt[3]{-(-8) + 2} = \sqrt[3]{8 + 2} = \sqrt[3]{10} \approx 2.154 \neq 4 \][/tex]

### Table 2

For [tex]\( x = -2 \)[/tex], [tex]\( y = 10 \)[/tex]:
[tex]\[ h(-2) = \sqrt[3]{-(-2) + 2} = \sqrt[3]{2 + 2} = \sqrt[3]{4} \approx 1.587 \neq 10 \][/tex]

### Table 3

For [tex]\( x = -6 \)[/tex], [tex]\( y = 2 \)[/tex]:
[tex]\[ h(-6) = \sqrt[3]{-(-6) + 2} = \sqrt[3]{6 + 2} = \sqrt[3]{8} = 2 \][/tex]

For [tex]\( x = 1 \)[/tex], [tex]\( y = 1 \)[/tex]:
[tex]\[ h(1) = \sqrt[3]{-(1) + 2} = \sqrt[3]{1} = 1 \][/tex]

For [tex]\( x = 2 \)[/tex], [tex]\( y = 0 \)[/tex]:
[tex]\[ h(2) = \sqrt[3]{-(2) + 2} = \sqrt[3]{0} = 0 \][/tex]

For [tex]\( x = 3 \)[/tex], [tex]\( y = -1 \)[/tex]:
[tex]\[ h(3) = \sqrt[3]{-(3) + 2} = \sqrt[3]{-1} = -1 \][/tex]

For [tex]\( x = 10 \)[/tex], [tex]\( y = -2 \)[/tex]:
[tex]\[ h(10) = \sqrt[3]{-(10) + 2} = \sqrt[3]{-8} = -2 \][/tex]

The values from Table 3 exactly match the computed values, therefore:

[tex]\[ \boxed{\text{Table 3}} \][/tex]

### Table 4

For [tex]\( x = -4 \)[/tex], [tex]\( y = -8 \)[/tex]:
[tex]\[ h(-4) = \sqrt[3]{-(-4) + 2} = \sqrt[3]{4 + 2} = \sqrt[3]{6} \approx 1.817 \neq -8 \][/tex]

After carefully examining the computations, we see that only Table 3 correctly represents the points on the graph of [tex]\( h(x) = \sqrt[3]{-x + 2} \)[/tex]. Thus, the correct answer is Table 3.