Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To find the minimum value of the objective function [tex]\( C = 10x + 26y \)[/tex] subject to the given constraints:
[tex]\[ \begin{array}{l} x + y \leq 6 \\ 5x + y \geq 10 \\ x + 5y \geq 14 \\ x \geq 0 \\ y \geq 0 \end{array} \][/tex]
we will follow the steps of linear programming:
1. Formulate the problem:
The objective is to minimize [tex]\( C = 10x + 26y \)[/tex].
2. Identify the constraints:
[tex]\[ \begin{array}{l} x + y \leq 6 \quad \text{(Constraint 1)} \\ 5x + y \geq 10 \quad \text{(Constraint 2)} \\ x + 5y \geq 14 \quad \text{(Constraint 3)} \\ x \geq 0 \quad \text{(Non-negativity)} \\ y \geq 0 \quad \text{(Non-negativity)} \end{array} \][/tex]
3. Find the feasible region:
- Constraint 1: [tex]\( x + y = 6 \)[/tex]
- Constraint 2: [tex]\( 5x + y = 10 \)[/tex]
- Constraint 3: [tex]\( x + 5y = 14 \)[/tex]
After transforming these inequalities into equations, these constraints define half-planes. The feasible region is the intersection of these half-planes along with the non-negativity constraints.
4. Determine the corner points:
Identify the intersections of the constraints in the feasible region. Solving these intersections systematically:
- Intersection of [tex]\( x + y = 6 \)[/tex] and [tex]\( 5x + y = 10 \)[/tex]:
[tex]\[ \begin{cases} x + y = 6 \\ 5x + y = 10 \end{cases} \][/tex]
Subtract the first equation from the second equation:
[tex]\[ 4x = 4 \implies x = 1 \\ y = 6 - x = 5 \][/tex]
Intersection point: [tex]\( (1, 5) \)[/tex]
- Intersection of [tex]\( x + y = 6 \)[/tex] and [tex]\( x + 5y = 14 \)[/tex]:
[tex]\[ \begin{cases} x + y = 6 \\ x + 5y = 14 \end{cases} \][/tex]
Subtract the first equation from the second equation:
[tex]\[ 4y = 8 \implies y = 2 \\ x = 6 - y = 4 \][/tex]
Intersection point: [tex]\( (4, 2) \)[/tex]
- Intersection of [tex]\( 5x + y = 10 \)[/tex] and [tex]\( x + 5y = 14 \)[/tex]:
[tex]\[ \begin{cases} 5x + y = 10 \\ x + 5y = 14 \end{cases} \][/tex]
Multiply the first equation by 5:
[tex]\[ 25x + 5y = 50 \\ x + 5y = 14 \][/tex]
Subtract the second equation from this:
[tex]\[ 24x = 36 \implies x = 1.5 \\ y = (10 - 5x) = 2.5 \][/tex]
Intersection point: [tex]\( (1.5, 2.5) \)[/tex]
5. Evaluate the objective function at each corner point:
[tex]\[ C = 10x + 26y \][/tex]
- At [tex]\( (1, 5) \)[/tex]:
[tex]\[ C = 10(1) + 26(5) = 10 + 130 = 140 \][/tex]
- At [tex]\( (4, 2) \)[/tex]:
[tex]\[ C = 10(4) + 26(2) = 40 + 52 = 92 \][/tex]
- At [tex]\( (1.5, 2.5) \)[/tex]:
[tex]\[ C = 10(1.5) + 26(2.5) = 15 + 65 = 80 \][/tex]
6. Conclusion:
The minimum value of [tex]\( C = 10x + 26y \)[/tex] subject to the given constraints is found at the point [tex]\( (1.5, 2.5) \)[/tex].
Therefore, the minimum value of [tex]\( C \)[/tex] is:
[tex]\[ \boxed{80} \][/tex]
[tex]\[ \begin{array}{l} x + y \leq 6 \\ 5x + y \geq 10 \\ x + 5y \geq 14 \\ x \geq 0 \\ y \geq 0 \end{array} \][/tex]
we will follow the steps of linear programming:
1. Formulate the problem:
The objective is to minimize [tex]\( C = 10x + 26y \)[/tex].
2. Identify the constraints:
[tex]\[ \begin{array}{l} x + y \leq 6 \quad \text{(Constraint 1)} \\ 5x + y \geq 10 \quad \text{(Constraint 2)} \\ x + 5y \geq 14 \quad \text{(Constraint 3)} \\ x \geq 0 \quad \text{(Non-negativity)} \\ y \geq 0 \quad \text{(Non-negativity)} \end{array} \][/tex]
3. Find the feasible region:
- Constraint 1: [tex]\( x + y = 6 \)[/tex]
- Constraint 2: [tex]\( 5x + y = 10 \)[/tex]
- Constraint 3: [tex]\( x + 5y = 14 \)[/tex]
After transforming these inequalities into equations, these constraints define half-planes. The feasible region is the intersection of these half-planes along with the non-negativity constraints.
4. Determine the corner points:
Identify the intersections of the constraints in the feasible region. Solving these intersections systematically:
- Intersection of [tex]\( x + y = 6 \)[/tex] and [tex]\( 5x + y = 10 \)[/tex]:
[tex]\[ \begin{cases} x + y = 6 \\ 5x + y = 10 \end{cases} \][/tex]
Subtract the first equation from the second equation:
[tex]\[ 4x = 4 \implies x = 1 \\ y = 6 - x = 5 \][/tex]
Intersection point: [tex]\( (1, 5) \)[/tex]
- Intersection of [tex]\( x + y = 6 \)[/tex] and [tex]\( x + 5y = 14 \)[/tex]:
[tex]\[ \begin{cases} x + y = 6 \\ x + 5y = 14 \end{cases} \][/tex]
Subtract the first equation from the second equation:
[tex]\[ 4y = 8 \implies y = 2 \\ x = 6 - y = 4 \][/tex]
Intersection point: [tex]\( (4, 2) \)[/tex]
- Intersection of [tex]\( 5x + y = 10 \)[/tex] and [tex]\( x + 5y = 14 \)[/tex]:
[tex]\[ \begin{cases} 5x + y = 10 \\ x + 5y = 14 \end{cases} \][/tex]
Multiply the first equation by 5:
[tex]\[ 25x + 5y = 50 \\ x + 5y = 14 \][/tex]
Subtract the second equation from this:
[tex]\[ 24x = 36 \implies x = 1.5 \\ y = (10 - 5x) = 2.5 \][/tex]
Intersection point: [tex]\( (1.5, 2.5) \)[/tex]
5. Evaluate the objective function at each corner point:
[tex]\[ C = 10x + 26y \][/tex]
- At [tex]\( (1, 5) \)[/tex]:
[tex]\[ C = 10(1) + 26(5) = 10 + 130 = 140 \][/tex]
- At [tex]\( (4, 2) \)[/tex]:
[tex]\[ C = 10(4) + 26(2) = 40 + 52 = 92 \][/tex]
- At [tex]\( (1.5, 2.5) \)[/tex]:
[tex]\[ C = 10(1.5) + 26(2.5) = 15 + 65 = 80 \][/tex]
6. Conclusion:
The minimum value of [tex]\( C = 10x + 26y \)[/tex] subject to the given constraints is found at the point [tex]\( (1.5, 2.5) \)[/tex].
Therefore, the minimum value of [tex]\( C \)[/tex] is:
[tex]\[ \boxed{80} \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.