Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Sure! Let's go through the solution step-by-step.
1. Understanding the Problem
- We have two similar cones: a smaller cone with a surface area of 11.74 square inches.
- The scaling factor from the smaller cone to the larger cone is given as either [tex]\(\frac{3.5}{2.1}\)[/tex] or [tex]\(\frac{5}{3}\)[/tex].
2. Determine the Scale Factor
- First, verify the scale factor:
- [tex]\(\frac{3.5}{2.1} = \frac{35}{21} = \frac{5}{3}\)[/tex]
- This confirms that the scale factor from the smaller cone to the larger cone is indeed [tex]\(\frac{5}{3}\)[/tex].
3. Calculate the Square of the Scale Factor
- Since surface areas of similar figures change by the square of the scale factor:
[tex]\[ \left(\frac{5}{3}\right)^2 = \frac{5^2}{3^2} = \frac{25}{9} \][/tex]
4. Set Up the Proportion
- Let [tex]\( x \)[/tex] be the surface area of the larger cone. From the given proportion:
[tex]\[ \frac{25}{9} = \frac{x}{11.74} \][/tex]
5. Solve for [tex]\( x \)[/tex]
- To solve for [tex]\( x \)[/tex], we multiply both sides of the proportion by the surface area of the smaller cone (11.74):
[tex]\[ x = \frac{25}{9} \times 11.74 \][/tex]
- This gives us:
[tex]\[ x = 32.6111\ldots \][/tex]
6. Round to the Nearest Hundredth
- Now round the result to the nearest hundredth:
[tex]\[ x \approx 32.61 \][/tex]
Therefore, the surface area of the larger cone is about [tex]\( 32.61 \)[/tex] square inches.
1. Understanding the Problem
- We have two similar cones: a smaller cone with a surface area of 11.74 square inches.
- The scaling factor from the smaller cone to the larger cone is given as either [tex]\(\frac{3.5}{2.1}\)[/tex] or [tex]\(\frac{5}{3}\)[/tex].
2. Determine the Scale Factor
- First, verify the scale factor:
- [tex]\(\frac{3.5}{2.1} = \frac{35}{21} = \frac{5}{3}\)[/tex]
- This confirms that the scale factor from the smaller cone to the larger cone is indeed [tex]\(\frac{5}{3}\)[/tex].
3. Calculate the Square of the Scale Factor
- Since surface areas of similar figures change by the square of the scale factor:
[tex]\[ \left(\frac{5}{3}\right)^2 = \frac{5^2}{3^2} = \frac{25}{9} \][/tex]
4. Set Up the Proportion
- Let [tex]\( x \)[/tex] be the surface area of the larger cone. From the given proportion:
[tex]\[ \frac{25}{9} = \frac{x}{11.74} \][/tex]
5. Solve for [tex]\( x \)[/tex]
- To solve for [tex]\( x \)[/tex], we multiply both sides of the proportion by the surface area of the smaller cone (11.74):
[tex]\[ x = \frac{25}{9} \times 11.74 \][/tex]
- This gives us:
[tex]\[ x = 32.6111\ldots \][/tex]
6. Round to the Nearest Hundredth
- Now round the result to the nearest hundredth:
[tex]\[ x \approx 32.61 \][/tex]
Therefore, the surface area of the larger cone is about [tex]\( 32.61 \)[/tex] square inches.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.