Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine the end behavior of the polynomial function [tex]\( g(x) = 5x^6 + x^5 + 9x^3 - 12x - 125 \)[/tex], we need to focus on the leading term of the polynomial, which is the term with the highest degree.
1. Identify the Leading Term: The leading term of the polynomial [tex]\( g(x) = 5x^6 + x^5 + 9x^3 - 12x - 125 \)[/tex] is the term with the highest power of [tex]\( x \)[/tex]. In this case, it is [tex]\( 5x^6 \)[/tex] since the highest exponent is 6.
2. Analyze the Leading Term: The leading term, [tex]\( 5x^6 \)[/tex], will dominate the behavior of the polynomial as [tex]\( x \)[/tex] approaches very large positive or negative values because the highest power term grows faster than any other terms.
3. Behavior as [tex]\( x \)[/tex] Approaches Positive Infinity:
- When [tex]\( x \)[/tex] approaches [tex]\( +\infty \)[/tex]:
[tex]\[ 5x^6 \rightarrow +\infty \][/tex]
Since the leading term [tex]\( 5x^6 \)[/tex] has a positive coefficient (5) and the exponent (6) is even, [tex]\( 5x^6 \)[/tex] will approach [tex]\( +\infty \)[/tex] as [tex]\( x \)[/tex] becomes very large in the positive direction.
4. Behavior as [tex]\( x \)[/tex] Approaches Negative Infinity:
- When [tex]\( x \)[/tex] approaches [tex]\( -\infty \)[/tex]:
[tex]\[ 5x^6 \rightarrow +\infty \][/tex]
Even though [tex]\( x \)[/tex] is negative, because the exponent (6) is even, raising a negative number to an even power results in a positive value. Therefore, [tex]\( 5x^6 \)[/tex] will also approach [tex]\( +\infty \)[/tex] as [tex]\( x \)[/tex] becomes very large in the negative direction.
By focusing on the leading term [tex]\( 5x^6 \)[/tex] and considering its coefficient and exponent, we can determine the end behavior of the graph of [tex]\( g(x) \)[/tex]:
- As [tex]\( x \)[/tex] approaches [tex]\( +\infty \)[/tex], [tex]\( g(x) \)[/tex] approaches [tex]\( +\infty \)[/tex].
- As [tex]\( x \)[/tex] approaches [tex]\( -\infty \)[/tex], [tex]\( g(x) \)[/tex] also approaches [tex]\( +\infty \)[/tex].
Hence, the end behavior of the graph of [tex]\( g(x) = 5x^6 + x^5 + 9x^3 - 12x - 125 \)[/tex] is:
[tex]\[ +\infty \text{ when } x \rightarrow +\infty, \quad +\infty \text{ when } x \rightarrow -\infty \][/tex]
1. Identify the Leading Term: The leading term of the polynomial [tex]\( g(x) = 5x^6 + x^5 + 9x^3 - 12x - 125 \)[/tex] is the term with the highest power of [tex]\( x \)[/tex]. In this case, it is [tex]\( 5x^6 \)[/tex] since the highest exponent is 6.
2. Analyze the Leading Term: The leading term, [tex]\( 5x^6 \)[/tex], will dominate the behavior of the polynomial as [tex]\( x \)[/tex] approaches very large positive or negative values because the highest power term grows faster than any other terms.
3. Behavior as [tex]\( x \)[/tex] Approaches Positive Infinity:
- When [tex]\( x \)[/tex] approaches [tex]\( +\infty \)[/tex]:
[tex]\[ 5x^6 \rightarrow +\infty \][/tex]
Since the leading term [tex]\( 5x^6 \)[/tex] has a positive coefficient (5) and the exponent (6) is even, [tex]\( 5x^6 \)[/tex] will approach [tex]\( +\infty \)[/tex] as [tex]\( x \)[/tex] becomes very large in the positive direction.
4. Behavior as [tex]\( x \)[/tex] Approaches Negative Infinity:
- When [tex]\( x \)[/tex] approaches [tex]\( -\infty \)[/tex]:
[tex]\[ 5x^6 \rightarrow +\infty \][/tex]
Even though [tex]\( x \)[/tex] is negative, because the exponent (6) is even, raising a negative number to an even power results in a positive value. Therefore, [tex]\( 5x^6 \)[/tex] will also approach [tex]\( +\infty \)[/tex] as [tex]\( x \)[/tex] becomes very large in the negative direction.
By focusing on the leading term [tex]\( 5x^6 \)[/tex] and considering its coefficient and exponent, we can determine the end behavior of the graph of [tex]\( g(x) \)[/tex]:
- As [tex]\( x \)[/tex] approaches [tex]\( +\infty \)[/tex], [tex]\( g(x) \)[/tex] approaches [tex]\( +\infty \)[/tex].
- As [tex]\( x \)[/tex] approaches [tex]\( -\infty \)[/tex], [tex]\( g(x) \)[/tex] also approaches [tex]\( +\infty \)[/tex].
Hence, the end behavior of the graph of [tex]\( g(x) = 5x^6 + x^5 + 9x^3 - 12x - 125 \)[/tex] is:
[tex]\[ +\infty \text{ when } x \rightarrow +\infty, \quad +\infty \text{ when } x \rightarrow -\infty \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.