At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To graph the function [tex]\( g(x) = \frac{x^2 - 4x + 4}{x} \)[/tex], let's follow a step-by-step approach:
### Step 1: Simplify the Function
1. Simplify the expression: Before graphing, simplify the given function if possible.
[tex]\[ g(x) = \frac{x^2 - 4x + 4}{x} \][/tex]
Notice that the numerator [tex]\( x^2 - 4x + 4 \)[/tex] can be factored:
[tex]\[ x^2 - 4x + 4 = (x - 2)^2 \][/tex]
So,
[tex]\[ g(x) = \frac{(x - 2)^2}{x} \][/tex]
### Step 2: Rewrite the Simplified Expression
2. Rewrite the simplified function:
[tex]\[ g(x) = \frac{(x - 2)^2}{x} = \frac{x - 2}{x} \cdot \frac{x - 2}{1} = \left(1 - \frac{2}{x}\right) \cdot (x - 2) \][/tex]
Breaking it further:
[tex]\[ g(x) = \left(\frac{x^2 - 4x + 4}{x}\right) = \frac{x(x - 4) + 4}{x} = x - 4 + \frac{4}{x} = x - 4 + \frac{4}{x} = x -4 + \frac{5}{x} \][/tex]
### Step 3: Determine Critical Points and Asymptotes
3. Evaluate critical points and asymptotes:
- The function is undefined at [tex]\( x = 0 \)[/tex] because of division by zero.
- As [tex]\( x \rightarrow \infty \)[/tex] or [tex]\( x \rightarrow -\infty \)[/tex], the term [tex]\( \frac{4}{x} \rightarrow 0 \)[/tex], so the function behaves like [tex]\( x - 4 \)[/tex].
### Step 4: Examine Key Points
4. Calculate key points for clearer plotting:
[tex]\[ g(x) = \frac{(x-2)^2}{x} \][/tex]
For specific values of [tex]\( x \)[/tex]:
- [tex]\( x = -2 \)[/tex]:
[tex]\[ g(-2) = \frac{(-2 - 2)^2}{-2} = \frac{16}{-2} = -8 \][/tex]
- [tex]\( x = -1 \)[/tex]:
[tex]\[ g(-1) = \frac{(-1 - 2)^2}{-1} = \frac{9}{-1} = -9 \][/tex]
- [tex]\( x = 1 \)[/tex]:
[tex]\[ g(1) = \frac{(1 - 2)^2}{1} = \frac{1}{1} = 1 \][/tex]
- [tex]\( x = 2 \)[/tex]:
[tex]\[ g(2) = \frac{(2 - 2)^2}{2} = \frac{0}{2} = 0 \][/tex]
- [tex]\( x = 4 \)[/tex]:
[tex]\[ g(4) = \frac{(4 - 2)^2}{4} = \frac{4}{4} = 1 \][/tex]
### Step 5: Sketch the Graph
5. Plot the function based on simplified expression and key points:
- The simplified and key-points calculations indicate asymptotic behavior around [tex]\( x = 0 \)[/tex] and linear trend [tex]\( g(x) \rightarrow x - 4 \)[/tex] for large [tex]\( x \)[/tex].
Steps to sketch:
1. Draw the coordinate axes.
2. Identify and mark the point of discontinuity at [tex]\( x = 0 \)[/tex].
3. Plot calculated points:
- [tex]\( (-2, -8) \)[/tex]
- [tex]\( (-1, -9) \)[/tex]
- [tex]\( (1, 1) \)[/tex]
- [tex]\( (2, 0) \)[/tex]
- [tex]\( (4, 1) \)[/tex]
4. Show behavior around [tex]\( x = 0 \)[/tex]:
- As [tex]\( x \rightarrow 0^{-}, g(x) \rightarrow \infty \)[/tex].
- As [tex]\( x \rightarrow 0^{+}, g(x) \rightarrow \infty \)[/tex].
5. Draw the curves smoothly, considering asymptotic behavior at [tex]\( x = 0 \)[/tex] and [tex]\( x \rightarrow \pm \infty \)[/tex].
### Final Graph Overview
The graph will feature:
- Vertical asymptote at [tex]\( x = 0 \)[/tex].
- A parabolic segment opening still crossing along [tex]\( x \rightarrow x - 4 \)[/tex] for large [tex]\( x \)[/tex].
### Refined Graph Defined
- [tex]\[ g(x) = \frac{(x - 2)^2}{x} \][/tex] showing descriptive changes across insightful points confirms function shape across varied domains (restricted as [tex]\( x \neq 0 \)[/tex]).
Thus, this thoroughly exception dynamic analysis completes comprehensive specifics, ensuring \( g(x) = \dots(x)...\over extended scales.
### Step 1: Simplify the Function
1. Simplify the expression: Before graphing, simplify the given function if possible.
[tex]\[ g(x) = \frac{x^2 - 4x + 4}{x} \][/tex]
Notice that the numerator [tex]\( x^2 - 4x + 4 \)[/tex] can be factored:
[tex]\[ x^2 - 4x + 4 = (x - 2)^2 \][/tex]
So,
[tex]\[ g(x) = \frac{(x - 2)^2}{x} \][/tex]
### Step 2: Rewrite the Simplified Expression
2. Rewrite the simplified function:
[tex]\[ g(x) = \frac{(x - 2)^2}{x} = \frac{x - 2}{x} \cdot \frac{x - 2}{1} = \left(1 - \frac{2}{x}\right) \cdot (x - 2) \][/tex]
Breaking it further:
[tex]\[ g(x) = \left(\frac{x^2 - 4x + 4}{x}\right) = \frac{x(x - 4) + 4}{x} = x - 4 + \frac{4}{x} = x - 4 + \frac{4}{x} = x -4 + \frac{5}{x} \][/tex]
### Step 3: Determine Critical Points and Asymptotes
3. Evaluate critical points and asymptotes:
- The function is undefined at [tex]\( x = 0 \)[/tex] because of division by zero.
- As [tex]\( x \rightarrow \infty \)[/tex] or [tex]\( x \rightarrow -\infty \)[/tex], the term [tex]\( \frac{4}{x} \rightarrow 0 \)[/tex], so the function behaves like [tex]\( x - 4 \)[/tex].
### Step 4: Examine Key Points
4. Calculate key points for clearer plotting:
[tex]\[ g(x) = \frac{(x-2)^2}{x} \][/tex]
For specific values of [tex]\( x \)[/tex]:
- [tex]\( x = -2 \)[/tex]:
[tex]\[ g(-2) = \frac{(-2 - 2)^2}{-2} = \frac{16}{-2} = -8 \][/tex]
- [tex]\( x = -1 \)[/tex]:
[tex]\[ g(-1) = \frac{(-1 - 2)^2}{-1} = \frac{9}{-1} = -9 \][/tex]
- [tex]\( x = 1 \)[/tex]:
[tex]\[ g(1) = \frac{(1 - 2)^2}{1} = \frac{1}{1} = 1 \][/tex]
- [tex]\( x = 2 \)[/tex]:
[tex]\[ g(2) = \frac{(2 - 2)^2}{2} = \frac{0}{2} = 0 \][/tex]
- [tex]\( x = 4 \)[/tex]:
[tex]\[ g(4) = \frac{(4 - 2)^2}{4} = \frac{4}{4} = 1 \][/tex]
### Step 5: Sketch the Graph
5. Plot the function based on simplified expression and key points:
- The simplified and key-points calculations indicate asymptotic behavior around [tex]\( x = 0 \)[/tex] and linear trend [tex]\( g(x) \rightarrow x - 4 \)[/tex] for large [tex]\( x \)[/tex].
Steps to sketch:
1. Draw the coordinate axes.
2. Identify and mark the point of discontinuity at [tex]\( x = 0 \)[/tex].
3. Plot calculated points:
- [tex]\( (-2, -8) \)[/tex]
- [tex]\( (-1, -9) \)[/tex]
- [tex]\( (1, 1) \)[/tex]
- [tex]\( (2, 0) \)[/tex]
- [tex]\( (4, 1) \)[/tex]
4. Show behavior around [tex]\( x = 0 \)[/tex]:
- As [tex]\( x \rightarrow 0^{-}, g(x) \rightarrow \infty \)[/tex].
- As [tex]\( x \rightarrow 0^{+}, g(x) \rightarrow \infty \)[/tex].
5. Draw the curves smoothly, considering asymptotic behavior at [tex]\( x = 0 \)[/tex] and [tex]\( x \rightarrow \pm \infty \)[/tex].
### Final Graph Overview
The graph will feature:
- Vertical asymptote at [tex]\( x = 0 \)[/tex].
- A parabolic segment opening still crossing along [tex]\( x \rightarrow x - 4 \)[/tex] for large [tex]\( x \)[/tex].
### Refined Graph Defined
- [tex]\[ g(x) = \frac{(x - 2)^2}{x} \][/tex] showing descriptive changes across insightful points confirms function shape across varied domains (restricted as [tex]\( x \neq 0 \)[/tex]).
Thus, this thoroughly exception dynamic analysis completes comprehensive specifics, ensuring \( g(x) = \dots(x)...\over extended scales.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.