Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Certainly! Let's go through the process of adding the two given polynomials step by step.
We are given two polynomials:
[tex]\[ (8r^2 - 7r - 9) \][/tex]
and
[tex]\[ (-r^2 + r). \][/tex]
### Step-by-Step Solution
1. Identify the like terms:
- The first polynomial: [tex]\(8r^2 - 7r - 9\)[/tex]
- The second polynomial: [tex]\(-r^2 + r\)[/tex]
2. Group the like terms together:
- For [tex]\(r^2\)[/tex] terms: [tex]\(8r^2\)[/tex] from the first polynomial and [tex]\(-r^2\)[/tex] from the second polynomial.
- For [tex]\(r\)[/tex] terms: [tex]\(-7r\)[/tex] from the first polynomial and [tex]\(+r\)[/tex] from the second polynomial.
- For the constant term: [tex]\(-9\)[/tex] from the first polynomial (the second polynomial does not have a constant term).
3. Add the coefficients of the like terms:
- [tex]\(r^2\)[/tex] term: [tex]\(8r^2 + (-r^2) = 8r^2 - r^2 = 7r^2\)[/tex]
- [tex]\(r\)[/tex] term: [tex]\(-7r + r = -7r + r = -6r\)[/tex]
- Constant term: [tex]\(-9 + 0 = -9\)[/tex]
4. Combine the results:
- The expanded polynomial in standard form will be: [tex]\( 7r^2 - 6r - 9 \)[/tex]
Therefore, the final answer is:
[tex]\[ (8r^2 - 7r - 9) + (-r^2 + r) = 7r^2 - 6r - 9 \][/tex]
We are given two polynomials:
[tex]\[ (8r^2 - 7r - 9) \][/tex]
and
[tex]\[ (-r^2 + r). \][/tex]
### Step-by-Step Solution
1. Identify the like terms:
- The first polynomial: [tex]\(8r^2 - 7r - 9\)[/tex]
- The second polynomial: [tex]\(-r^2 + r\)[/tex]
2. Group the like terms together:
- For [tex]\(r^2\)[/tex] terms: [tex]\(8r^2\)[/tex] from the first polynomial and [tex]\(-r^2\)[/tex] from the second polynomial.
- For [tex]\(r\)[/tex] terms: [tex]\(-7r\)[/tex] from the first polynomial and [tex]\(+r\)[/tex] from the second polynomial.
- For the constant term: [tex]\(-9\)[/tex] from the first polynomial (the second polynomial does not have a constant term).
3. Add the coefficients of the like terms:
- [tex]\(r^2\)[/tex] term: [tex]\(8r^2 + (-r^2) = 8r^2 - r^2 = 7r^2\)[/tex]
- [tex]\(r\)[/tex] term: [tex]\(-7r + r = -7r + r = -6r\)[/tex]
- Constant term: [tex]\(-9 + 0 = -9\)[/tex]
4. Combine the results:
- The expanded polynomial in standard form will be: [tex]\( 7r^2 - 6r - 9 \)[/tex]
Therefore, the final answer is:
[tex]\[ (8r^2 - 7r - 9) + (-r^2 + r) = 7r^2 - 6r - 9 \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.