Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the distance the outfielder throws the ball to the pitcher, we can use the Law of Cosines. This approach is necessary because the hit forms a triangle with the pitcher's mound and the point where the outfielder catches the ball. Here's the step-by-step solution:
1. Identify the given values:
- Distance from the pitcher's mound to home plate (side [tex]\( a \)[/tex]): [tex]\( 60.5 \)[/tex] feet.
- Distance from the pitcher's mound to where the ball is caught (side [tex]\( b \)[/tex]): [tex]\( 214 \)[/tex] feet.
- Angle between these two sides at home plate ([tex]\( \angle C \)[/tex]): [tex]\( 36 \)[/tex] degrees.
2. Convert the angle to radians:
To use the Law of Cosines, angles should be in radians.
[tex]\[ \text{Angle in radians} = 0.6283185307179586 \, \text{radians} \][/tex]
3. Apply the Law of Cosines:
The Law of Cosines formula is:
[tex]\[ c^2 = a^2 + b^2 - 2ab \cos(C) \][/tex]
where [tex]\( a \)[/tex] and [tex]\( b \)[/tex] are the lengths of the two sides, and [tex]\( C \)[/tex] is the included angle. Plugging in the known values:
[tex]\[ c^2 = 60.5^2 + 214^2 - 2 \times 60.5 \times 214 \times \cos(0.6283185307179586) \][/tex]
4. Calculate the squared distance:
[tex]\[ c^2 = 28507.56394765511 \, \text{square feet} \][/tex]
5. Take the square root to find the distance [tex]\( c \)[/tex]:
[tex]\[ c = \sqrt{28507.56394765511} \approx 168.84183115464933 \, \text{feet} \][/tex]
Thus, the distance the outfielder throws the ball to the pitcher is approximately [tex]\( 168.84 \)[/tex] feet.
1. Identify the given values:
- Distance from the pitcher's mound to home plate (side [tex]\( a \)[/tex]): [tex]\( 60.5 \)[/tex] feet.
- Distance from the pitcher's mound to where the ball is caught (side [tex]\( b \)[/tex]): [tex]\( 214 \)[/tex] feet.
- Angle between these two sides at home plate ([tex]\( \angle C \)[/tex]): [tex]\( 36 \)[/tex] degrees.
2. Convert the angle to radians:
To use the Law of Cosines, angles should be in radians.
[tex]\[ \text{Angle in radians} = 0.6283185307179586 \, \text{radians} \][/tex]
3. Apply the Law of Cosines:
The Law of Cosines formula is:
[tex]\[ c^2 = a^2 + b^2 - 2ab \cos(C) \][/tex]
where [tex]\( a \)[/tex] and [tex]\( b \)[/tex] are the lengths of the two sides, and [tex]\( C \)[/tex] is the included angle. Plugging in the known values:
[tex]\[ c^2 = 60.5^2 + 214^2 - 2 \times 60.5 \times 214 \times \cos(0.6283185307179586) \][/tex]
4. Calculate the squared distance:
[tex]\[ c^2 = 28507.56394765511 \, \text{square feet} \][/tex]
5. Take the square root to find the distance [tex]\( c \)[/tex]:
[tex]\[ c = \sqrt{28507.56394765511} \approx 168.84183115464933 \, \text{feet} \][/tex]
Thus, the distance the outfielder throws the ball to the pitcher is approximately [tex]\( 168.84 \)[/tex] feet.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.