Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine the amount of energy stored in a 120μF capacitor charged to a potential difference of 240V, we can use the formula for the energy stored in a capacitor:
[tex]\[ E = \frac{1}{2} C V^2 \][/tex]
where:
- [tex]\( E \)[/tex] is the energy stored in the capacitor,
- [tex]\( C \)[/tex] is the capacitance of the capacitor,
- [tex]\( V \)[/tex] is the potential difference across the capacitor.
Let's break down the calculation step by step:
1. Identify the given values:
- Capacitance [tex]\( C \)[/tex]: [tex]\( 120\mu F \)[/tex] or [tex]\( 120 \times 10^{-6} \, F \)[/tex].
- Voltage [tex]\( V \)[/tex]: [tex]\( 240 \, V \)[/tex].
2. Substitute the given values into the formula:
[tex]\[ E = \frac{1}{2} \times (120 \times 10^{-6}) \times (240)^2 \][/tex]
3. Simplify and solve:
[tex]\[ E = \frac{1}{2} \times 120 \times 10^{-6} \times 57600 \][/tex]
4. Calculate the numerical result step-by-step:
- Calculate the square of the voltage:
[tex]\[ (240)^2 = 57600 \][/tex]
- Multiply the capacitance by the squared voltage:
[tex]\[ 120 \times 10^{-6} \times 57600 = 6.912 \][/tex]
- Finally, multiply by [tex]\(\frac{1}{2}\)[/tex]:
[tex]\[ \frac{1}{2} \times 6.912 = 3.456 \][/tex]
Therefore, the energy stored in the capacitor is [tex]\( 3.456 \)[/tex] joules.
[tex]\[ E = \frac{1}{2} C V^2 \][/tex]
where:
- [tex]\( E \)[/tex] is the energy stored in the capacitor,
- [tex]\( C \)[/tex] is the capacitance of the capacitor,
- [tex]\( V \)[/tex] is the potential difference across the capacitor.
Let's break down the calculation step by step:
1. Identify the given values:
- Capacitance [tex]\( C \)[/tex]: [tex]\( 120\mu F \)[/tex] or [tex]\( 120 \times 10^{-6} \, F \)[/tex].
- Voltage [tex]\( V \)[/tex]: [tex]\( 240 \, V \)[/tex].
2. Substitute the given values into the formula:
[tex]\[ E = \frac{1}{2} \times (120 \times 10^{-6}) \times (240)^2 \][/tex]
3. Simplify and solve:
[tex]\[ E = \frac{1}{2} \times 120 \times 10^{-6} \times 57600 \][/tex]
4. Calculate the numerical result step-by-step:
- Calculate the square of the voltage:
[tex]\[ (240)^2 = 57600 \][/tex]
- Multiply the capacitance by the squared voltage:
[tex]\[ 120 \times 10^{-6} \times 57600 = 6.912 \][/tex]
- Finally, multiply by [tex]\(\frac{1}{2}\)[/tex]:
[tex]\[ \frac{1}{2} \times 6.912 = 3.456 \][/tex]
Therefore, the energy stored in the capacitor is [tex]\( 3.456 \)[/tex] joules.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.