Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

\begin{tabular}{|c|c|c|c|c|}
\hline & [tex]$X$[/tex] & [tex]$Y$[/tex] & [tex]$Z$[/tex] & Total \\
\hline A & 10 & 80 & 61 & 151 \\
\hline B & 110 & 44 & 126 & 280 \\
\hline C & 60 & 59 & 110 & 229 \\
\hline Total & 180 & 183 & 297 & 660 \\
\hline
\end{tabular}

Which statement is true about whether [tex]$Z$[/tex] and [tex]$B$[/tex] are independent events?

A. [tex]$Z$[/tex] and [tex]$B$[/tex] are independent events because [tex]$P(Z \mid B) = P(Z)$[/tex].
B. [tex]$Z$[/tex] and [tex]$B$[/tex] are independent events because [tex]$P(Z \mid B) = P(B)$[/tex].
C. [tex]$Z$[/tex] and [tex]$B$[/tex] are not independent events because [tex]$P(Z \mid B) \neq P(Z)$[/tex].
D. [tex]$Z$[/tex] and [tex]$B$[/tex] are not independent events because [tex]$P(Z \mid B) \neq P(B)$[/tex].


Sagot :

To determine whether [tex]\( Z \)[/tex] and [tex]\( B \)[/tex] are independent events, we need to compare the conditional probability [tex]\( P(Z \mid B) \)[/tex] with the probability [tex]\( P(Z) \)[/tex].

First, we calculate the probability [tex]\( P(Z) \)[/tex]:

[tex]\[ P(Z) = \frac{\text{Total count for } Z}{\text{Total count}} = \frac{297}{660} \][/tex]

Next, we calculate the probability [tex]\( P(B) \)[/tex]:

[tex]\[ P(B) = \frac{\text{Total count for } B}{\text{Total count}} = \frac{280}{660} \][/tex]

Then, we determine the conditional probability [tex]\( P(Z \mid B) \)[/tex]:

[tex]\[ P(Z \mid B) = \frac{\text{Count for both } B \text{ and } Z}{\text{Total count for } B} = \frac{126}{280} \][/tex]

To confirm whether [tex]\( Z \)[/tex] and [tex]\( B \)[/tex] are independent events, we check if [tex]\( P(Z \mid B) = P(Z) \)[/tex].

We start by verifying if the calculated values for [tex]\( P(Z) \)[/tex] and [tex]\( P(Z \mid B) \)[/tex] are equal. According to the given information, these values match:

[tex]\[ P(Z) = \frac{297}{660} \approx 0.45 \][/tex]
[tex]\[ P(Z \mid B) = \frac{126}{280} \approx 0.45 \][/tex]

Since [tex]\( P(Z \mid B) = P(Z) \)[/tex], we conclude that [tex]\( Z \)[/tex] and [tex]\( B \)[/tex] are independent events.

Therefore, the correct statement is:

- [tex]\( Z \)[/tex] and [tex]\( B \)[/tex] are independent events because [tex]\( P(Z \mid B) = P(Z) \)[/tex].
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.