Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To find the correct component form of vector [tex]\( v \)[/tex], let's proceed step-by-step.
1. Determine Vector [tex]\( u \)[/tex]:
- Initial point of [tex]\( u \)[/tex]: [tex]\((15, 22)\)[/tex]
- Terminal point of [tex]\( u \)[/tex]: [tex]\((5, -4)\)[/tex]
The component form of [tex]\( u \)[/tex] is determined by subtracting the coordinates of the initial point from the coordinates of the terminal point.
[tex]\[ u_x = 5 - 15 = -10 \][/tex]
[tex]\[ u_y = -4 - 22 = -26 \][/tex]
Therefore, vector [tex]\( u \)[/tex] can be represented as:
[tex]\[ u = \langle -10, -26 \rangle \][/tex]
2. Determine Vector [tex]\( v \)[/tex]:
We know that vector [tex]\( v \)[/tex] is twice the magnitude of [tex]\( u \)[/tex] and points in the opposite direction.
- Opposite direction: Simply negate the components of [tex]\( u \)[/tex].
- Twice the magnitude: Multiply the components by 2.
So, the components of [tex]\( v \)[/tex]:
[tex]\[ v_x = -2 \times (-10) = 20 \][/tex]
[tex]\[ v_y = -2 \times (-26) = 52 \][/tex]
Therefore, vector [tex]\( v \)[/tex] in component form is:
[tex]\[ v = \langle 20, 52 \rangle \][/tex]
So, the correct answer is:
[tex]\[ \boxed{D. \ v = \langle 20, 52 \rangle} \][/tex]
1. Determine Vector [tex]\( u \)[/tex]:
- Initial point of [tex]\( u \)[/tex]: [tex]\((15, 22)\)[/tex]
- Terminal point of [tex]\( u \)[/tex]: [tex]\((5, -4)\)[/tex]
The component form of [tex]\( u \)[/tex] is determined by subtracting the coordinates of the initial point from the coordinates of the terminal point.
[tex]\[ u_x = 5 - 15 = -10 \][/tex]
[tex]\[ u_y = -4 - 22 = -26 \][/tex]
Therefore, vector [tex]\( u \)[/tex] can be represented as:
[tex]\[ u = \langle -10, -26 \rangle \][/tex]
2. Determine Vector [tex]\( v \)[/tex]:
We know that vector [tex]\( v \)[/tex] is twice the magnitude of [tex]\( u \)[/tex] and points in the opposite direction.
- Opposite direction: Simply negate the components of [tex]\( u \)[/tex].
- Twice the magnitude: Multiply the components by 2.
So, the components of [tex]\( v \)[/tex]:
[tex]\[ v_x = -2 \times (-10) = 20 \][/tex]
[tex]\[ v_y = -2 \times (-26) = 52 \][/tex]
Therefore, vector [tex]\( v \)[/tex] in component form is:
[tex]\[ v = \langle 20, 52 \rangle \][/tex]
So, the correct answer is:
[tex]\[ \boxed{D. \ v = \langle 20, 52 \rangle} \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.