Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the gravitational force you would experience on the surface of Mercury, we need to use Newton's law of gravitation.
The formula for calculating the gravitational force [tex]\( F_{\text{gravity}} \)[/tex] is:
[tex]\[ F_{\text{gravity}} = \frac{G \cdot m_1 \cdot m_2}{r^2} \][/tex]
Where:
- [tex]\( G \)[/tex] is the gravitational constant, [tex]\( 6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \)[/tex]
- [tex]\( m_1 \)[/tex] is the mass of the object (your mass), [tex]\( 68.05 \, \text{kg} \)[/tex]
- [tex]\( m_2 \)[/tex] is the mass of Mercury, [tex]\( 3.30 \times 10^{23} \, \text{kg} \)[/tex]
- [tex]\( r \)[/tex] is the radius of Mercury, [tex]\( 2.44 \times 10^6 \, \text{m} \)[/tex]
Let's put these values into the formula step-by-step:
1. Identify the values:
- [tex]\( G = 6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \)[/tex]
- [tex]\( m_1 = 68.05 \, \text{kg} \)[/tex]
- [tex]\( m_2 = 3.30 \times 10^{23} \, \text{kg} \)[/tex]
- [tex]\( r = 2.44 \times 10^6 \, \text{m} \)[/tex]
2. Calculate [tex]\( r^2 \)[/tex]:
[tex]\[ r^2 = (2.44 \times 10^6 \, \text{m})^2 = 5.9536 \times 10^{12} \, \text{m}^2 \][/tex]
3. Plug the values into the formula:
[tex]\[ F_{\text{gravity}} = \frac{(6.67 \times 10^{-11}) \cdot (68.05) \cdot (3.30 \times 10^{23})}{5.9536 \times 10^{12}} \][/tex]
4. Calculate the numerator:
[tex]\[ 6.67 \times 10^{-11} \cdot 68.05 \cdot 3.30 \times 10^{23} = 1.4982835 \times 10^{14} \][/tex]
5. Calculate the force:
[tex]\[ F_{\text{gravity}} = \frac{1.4982835 \times 10^{14}}{5.9536 \times 10^{12}} = 251.58703137597416 \, \text{N} \][/tex]
Thus, the gravitational force you would experience on the surface of Mercury is approximately [tex]\( 251.59 \, \text{N} \)[/tex].
The formula for calculating the gravitational force [tex]\( F_{\text{gravity}} \)[/tex] is:
[tex]\[ F_{\text{gravity}} = \frac{G \cdot m_1 \cdot m_2}{r^2} \][/tex]
Where:
- [tex]\( G \)[/tex] is the gravitational constant, [tex]\( 6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \)[/tex]
- [tex]\( m_1 \)[/tex] is the mass of the object (your mass), [tex]\( 68.05 \, \text{kg} \)[/tex]
- [tex]\( m_2 \)[/tex] is the mass of Mercury, [tex]\( 3.30 \times 10^{23} \, \text{kg} \)[/tex]
- [tex]\( r \)[/tex] is the radius of Mercury, [tex]\( 2.44 \times 10^6 \, \text{m} \)[/tex]
Let's put these values into the formula step-by-step:
1. Identify the values:
- [tex]\( G = 6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \)[/tex]
- [tex]\( m_1 = 68.05 \, \text{kg} \)[/tex]
- [tex]\( m_2 = 3.30 \times 10^{23} \, \text{kg} \)[/tex]
- [tex]\( r = 2.44 \times 10^6 \, \text{m} \)[/tex]
2. Calculate [tex]\( r^2 \)[/tex]:
[tex]\[ r^2 = (2.44 \times 10^6 \, \text{m})^2 = 5.9536 \times 10^{12} \, \text{m}^2 \][/tex]
3. Plug the values into the formula:
[tex]\[ F_{\text{gravity}} = \frac{(6.67 \times 10^{-11}) \cdot (68.05) \cdot (3.30 \times 10^{23})}{5.9536 \times 10^{12}} \][/tex]
4. Calculate the numerator:
[tex]\[ 6.67 \times 10^{-11} \cdot 68.05 \cdot 3.30 \times 10^{23} = 1.4982835 \times 10^{14} \][/tex]
5. Calculate the force:
[tex]\[ F_{\text{gravity}} = \frac{1.4982835 \times 10^{14}}{5.9536 \times 10^{12}} = 251.58703137597416 \, \text{N} \][/tex]
Thus, the gravitational force you would experience on the surface of Mercury is approximately [tex]\( 251.59 \, \text{N} \)[/tex].
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.