At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To solve this problem, follow these steps:
1. Count the number of students with at least one, but no more than two, siblings:
- Students with 1 sibling: [tex]\(18\)[/tex]
- Students with 2 siblings: [tex]\(10\)[/tex]
Add these two numbers together to find the total number of students with at least one, but no more than two, siblings:
[tex]\[ 18 + 10 = 28 \][/tex]
2. Calculate the total number of students surveyed:
Add the numbers of students in each category:
- Students with 0 siblings: [tex]\(4\)[/tex]
- Students with 1 sibling: [tex]\(18\)[/tex]
- Students with 2 siblings: [tex]\(10\)[/tex]
- Students with 3 siblings: [tex]\(8\)[/tex]
So, the total number of students is:
[tex]\[ 4 + 18 + 10 + 8 = 40 \][/tex]
3. Determine the experimental probability:
The probability is the ratio of the number of students with at least one, but no more than two, siblings to the total number of students. Therefore, the probability is:
[tex]\[ \frac{28}{40} \][/tex]
Convert this fraction to a percentage by multiplying by 100:
[tex]\[ \left(\frac{28}{40}\right) \times 100 = 70\% \][/tex]
4. Round the result to the nearest whole percent:
The probability is already a whole number, so no further rounding is needed.
Therefore, the experimental probability that a 10th-grade student chosen at random has at least one, but no more than two, siblings is:
[tex]\[ \boxed{70\%} \][/tex]
So, the correct answer is [tex]\(70\%\)[/tex].
1. Count the number of students with at least one, but no more than two, siblings:
- Students with 1 sibling: [tex]\(18\)[/tex]
- Students with 2 siblings: [tex]\(10\)[/tex]
Add these two numbers together to find the total number of students with at least one, but no more than two, siblings:
[tex]\[ 18 + 10 = 28 \][/tex]
2. Calculate the total number of students surveyed:
Add the numbers of students in each category:
- Students with 0 siblings: [tex]\(4\)[/tex]
- Students with 1 sibling: [tex]\(18\)[/tex]
- Students with 2 siblings: [tex]\(10\)[/tex]
- Students with 3 siblings: [tex]\(8\)[/tex]
So, the total number of students is:
[tex]\[ 4 + 18 + 10 + 8 = 40 \][/tex]
3. Determine the experimental probability:
The probability is the ratio of the number of students with at least one, but no more than two, siblings to the total number of students. Therefore, the probability is:
[tex]\[ \frac{28}{40} \][/tex]
Convert this fraction to a percentage by multiplying by 100:
[tex]\[ \left(\frac{28}{40}\right) \times 100 = 70\% \][/tex]
4. Round the result to the nearest whole percent:
The probability is already a whole number, so no further rounding is needed.
Therefore, the experimental probability that a 10th-grade student chosen at random has at least one, but no more than two, siblings is:
[tex]\[ \boxed{70\%} \][/tex]
So, the correct answer is [tex]\(70\%\)[/tex].
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.