Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To solve the problem, follow these steps:
1. Identify the coordinates of points W and X:
[tex]\[ W = (3, 2) \quad \text{and} \quad X = (7, 5) \][/tex]
2. Calculate the slope of line segment [tex]\( \overline{WX} \)[/tex]:
The formula for the slope between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is:
[tex]\[ \text{slope}_{WX} = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Substituting the values:
[tex]\[ \text{slope}_{WX} = \frac{5 - 2}{7 - 3} = \frac{3}{4} \][/tex]
3. Dilate point X with respect to W with a scale factor of 3:
The formula to find the coordinates of the dilated point [tex]\(X'\)[/tex] is given by:
[tex]\[ X' = \left(W_x + \text{scale factor} \times (X_x - W_x), W_y + \text{scale factor} \times (X_y - W_y)\right) \][/tex]
Plugging in the values:
[tex]\[ X' = \left(3 + 3 \times (7 - 3), 2 + 3 \times (5 - 2)\right) = (3 + 12, 2 + 9) = (15, 11) \][/tex]
4. Calculate the slope of line segment [tex]\( \overline{W'X'} \)[/tex]:
Since W' coincides with W (because they are the center of dilation) the slope of [tex]\( \overline{W'X'} \)[/tex] is the same as the slope of [tex]\( \overline{WX} \)[/tex]:
[tex]\[ \text{slope}_{W'X'} = \frac{11 - 2}{15 - 3} = \frac{9}{12} = \frac{3}{4} \][/tex]
So, the slope of [tex]\( \overline{W'X'} \)[/tex] remains:
[tex]\[ \text{slope}_{W'X'} = \frac{3}{4} \][/tex]
5. Calculate the length of [tex]\( \overline{W'X'} \)[/tex]:
Using the distance formula to calculate the length of [tex]\( \overline{W'X'} \)[/tex]:
[tex]\[ \text{length}_{W'X'} = \sqrt{(15 - 3)^2 + (11 - 2)^2} = \sqrt{12^2 + 9^2} = \sqrt{144 + 81} = \sqrt{225} = 15 \][/tex]
6. Identify the correct statement:
We need to match the slope of [tex]\( \overline{W'X'} \)[/tex] and the length of [tex]\( \overline{W'X'} \)[/tex] with the given options.
- We found that the slope of [tex]\( \overline{W'X'} \)[/tex] is [tex]\(\frac{3}{4}\)[/tex].
- The length of [tex]\( \overline{W'X'} \)[/tex] is 15.
Thus, the correct statement is:
[tex]\[ \boxed{\text{C. The slope of \(\overline{W'X'}\) is \(\frac{3}{4}\), and the length of \(\overline{W'X'}\) is 15.}} \][/tex]
1. Identify the coordinates of points W and X:
[tex]\[ W = (3, 2) \quad \text{and} \quad X = (7, 5) \][/tex]
2. Calculate the slope of line segment [tex]\( \overline{WX} \)[/tex]:
The formula for the slope between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is:
[tex]\[ \text{slope}_{WX} = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Substituting the values:
[tex]\[ \text{slope}_{WX} = \frac{5 - 2}{7 - 3} = \frac{3}{4} \][/tex]
3. Dilate point X with respect to W with a scale factor of 3:
The formula to find the coordinates of the dilated point [tex]\(X'\)[/tex] is given by:
[tex]\[ X' = \left(W_x + \text{scale factor} \times (X_x - W_x), W_y + \text{scale factor} \times (X_y - W_y)\right) \][/tex]
Plugging in the values:
[tex]\[ X' = \left(3 + 3 \times (7 - 3), 2 + 3 \times (5 - 2)\right) = (3 + 12, 2 + 9) = (15, 11) \][/tex]
4. Calculate the slope of line segment [tex]\( \overline{W'X'} \)[/tex]:
Since W' coincides with W (because they are the center of dilation) the slope of [tex]\( \overline{W'X'} \)[/tex] is the same as the slope of [tex]\( \overline{WX} \)[/tex]:
[tex]\[ \text{slope}_{W'X'} = \frac{11 - 2}{15 - 3} = \frac{9}{12} = \frac{3}{4} \][/tex]
So, the slope of [tex]\( \overline{W'X'} \)[/tex] remains:
[tex]\[ \text{slope}_{W'X'} = \frac{3}{4} \][/tex]
5. Calculate the length of [tex]\( \overline{W'X'} \)[/tex]:
Using the distance formula to calculate the length of [tex]\( \overline{W'X'} \)[/tex]:
[tex]\[ \text{length}_{W'X'} = \sqrt{(15 - 3)^2 + (11 - 2)^2} = \sqrt{12^2 + 9^2} = \sqrt{144 + 81} = \sqrt{225} = 15 \][/tex]
6. Identify the correct statement:
We need to match the slope of [tex]\( \overline{W'X'} \)[/tex] and the length of [tex]\( \overline{W'X'} \)[/tex] with the given options.
- We found that the slope of [tex]\( \overline{W'X'} \)[/tex] is [tex]\(\frac{3}{4}\)[/tex].
- The length of [tex]\( \overline{W'X'} \)[/tex] is 15.
Thus, the correct statement is:
[tex]\[ \boxed{\text{C. The slope of \(\overline{W'X'}\) is \(\frac{3}{4}\), and the length of \(\overline{W'X'}\) is 15.}} \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.