Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Sure, let's solve the equation step by step.
We start with the given equation:
[tex]\[ x - 2x - \left(\frac{3x - 4}{7}\right) = \left(\frac{4x - 27}{3}\right) - 3 \][/tex]
1. Combine like terms on the left-hand side:
[tex]\[ x - 2x = -x \][/tex]
So the equation becomes:
[tex]\[ -x - \left(\frac{3x - 4}{7}\right) = \left(\frac{4x - 27}{3}\right) - 3 \][/tex]
2. Clear the fractions by finding a common denominator for the entire equation.
- The common denominator for the terms involving fractions can be found from 7 and 3, which is 21.
3. Rewrite the equation by multiplying all terms by 21 to eliminate the fractions:
[tex]\[ 21 \left(-x - \frac{3x - 4}{7}\right) = 21 \left(\frac{4x - 27}{3} - 3\right) \][/tex]
4. Distribute 21 inside the parentheses:
[tex]\[ 21(-x) - 21 \left(\frac{3x - 4}{7}\right) = 21 \left(\frac{4x - 27}{3}\right) - 21 \cdot 3 \][/tex]
5. Simplify each term:
[tex]\[ 21(-x) - 3(3x - 4) = 7(4x - 27) - 63 \][/tex]
6. Distribute inside the parentheses:
[tex]\[ -21x - (9x - 12) = 28x - 189 - 63 \][/tex]
7. Simplify both sides of the equation:
[tex]\[ -21x - 9x + 12 = 28x - 252 \][/tex]
8. Combine like terms:
[tex]\[ -30x + 12 = 28x - 252 \][/tex]
9. Move all terms involving [tex]\( x \)[/tex] to one side and constant terms to the other side:
[tex]\[ -30x - 28x = -252 - 12 \][/tex]
[tex]\[ -58x = -264 \][/tex]
10. Solve for [tex]\( x \)[/tex] by dividing both sides by -58:
[tex]\[ x = \frac{-264}{-58} \][/tex]
[tex]\[ x = \frac{264}{58} \][/tex]
[tex]\[ x = \frac{132}{29} \][/tex]
So the solution to the given equation is:
[tex]\[ x = \frac{132}{29} \][/tex]
We start with the given equation:
[tex]\[ x - 2x - \left(\frac{3x - 4}{7}\right) = \left(\frac{4x - 27}{3}\right) - 3 \][/tex]
1. Combine like terms on the left-hand side:
[tex]\[ x - 2x = -x \][/tex]
So the equation becomes:
[tex]\[ -x - \left(\frac{3x - 4}{7}\right) = \left(\frac{4x - 27}{3}\right) - 3 \][/tex]
2. Clear the fractions by finding a common denominator for the entire equation.
- The common denominator for the terms involving fractions can be found from 7 and 3, which is 21.
3. Rewrite the equation by multiplying all terms by 21 to eliminate the fractions:
[tex]\[ 21 \left(-x - \frac{3x - 4}{7}\right) = 21 \left(\frac{4x - 27}{3} - 3\right) \][/tex]
4. Distribute 21 inside the parentheses:
[tex]\[ 21(-x) - 21 \left(\frac{3x - 4}{7}\right) = 21 \left(\frac{4x - 27}{3}\right) - 21 \cdot 3 \][/tex]
5. Simplify each term:
[tex]\[ 21(-x) - 3(3x - 4) = 7(4x - 27) - 63 \][/tex]
6. Distribute inside the parentheses:
[tex]\[ -21x - (9x - 12) = 28x - 189 - 63 \][/tex]
7. Simplify both sides of the equation:
[tex]\[ -21x - 9x + 12 = 28x - 252 \][/tex]
8. Combine like terms:
[tex]\[ -30x + 12 = 28x - 252 \][/tex]
9. Move all terms involving [tex]\( x \)[/tex] to one side and constant terms to the other side:
[tex]\[ -30x - 28x = -252 - 12 \][/tex]
[tex]\[ -58x = -264 \][/tex]
10. Solve for [tex]\( x \)[/tex] by dividing both sides by -58:
[tex]\[ x = \frac{-264}{-58} \][/tex]
[tex]\[ x = \frac{264}{58} \][/tex]
[tex]\[ x = \frac{132}{29} \][/tex]
So the solution to the given equation is:
[tex]\[ x = \frac{132}{29} \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.