Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To solve the equation [tex]\(\log_2 11 - \log_2 \frac{x}{y} = \log_2 \frac{11}{9}\)[/tex], we can use properties of logarithms and basic algebraic manipulation. Here is the step-by-step solution:
1. Apply the properties of logarithms:
The logarithmic difference [tex]\(\log_b(a) - \log_b(c)\)[/tex] can be simplified to a single logarithm: [tex]\(\log_b(a/c)\)[/tex].
Therefore, the given expression:
[tex]\[ \log_2 11 - \log_2 \frac{x}{y} \][/tex]
can be written as:
[tex]\[ \log_2 \left( \frac{11}{x/y} \right) \][/tex]
Simplifying the argument of the logarithm:
[tex]\[ \log_2 \left( \frac{11 \cdot y}{x} \right) \][/tex]
2. Set the logarithmic expressions equal to each other:
According to the given equation:
[tex]\[ \log_2 \left( \frac{11 \cdot y}{x} \right) = \log_2 \left( \frac{11}{9} \right) \][/tex]
3. Equate the arguments:
Since the logarithms are equal, their arguments must also be equal:
[tex]\[ \frac{11 \cdot y}{x} = \frac{11}{9} \][/tex]
4. Simplify the equation:
Divide both sides by 11 to isolate the fraction on the left side:
[tex]\[ \frac{y}{x} = \frac{1}{9} \][/tex]
5. Solve for [tex]\(x\)[/tex] in terms of [tex]\(y\)[/tex]:
[tex]\[ y = \frac{x}{9} \][/tex]
6. Determine specific values:
We can choose specific values for [tex]\(x\)[/tex] and [tex]\(y\)[/tex] that satisfy this equation. A straightforward solution is to set [tex]\(y = 1\)[/tex]. Thus:
[tex]\[ \frac{1}{x} = \frac{1}{9} \][/tex]
7. Find the value of [tex]\(x\)[/tex]:
[tex]\[ x = 9 \][/tex]
So the specific values that satisfy the equation are:
[tex]\[ (x, y) = (9, 1) \][/tex]
Hence, the solution to the given logarithmic equation is:
[tex]\[ (x, y) = (9, 1) \][/tex]
1. Apply the properties of logarithms:
The logarithmic difference [tex]\(\log_b(a) - \log_b(c)\)[/tex] can be simplified to a single logarithm: [tex]\(\log_b(a/c)\)[/tex].
Therefore, the given expression:
[tex]\[ \log_2 11 - \log_2 \frac{x}{y} \][/tex]
can be written as:
[tex]\[ \log_2 \left( \frac{11}{x/y} \right) \][/tex]
Simplifying the argument of the logarithm:
[tex]\[ \log_2 \left( \frac{11 \cdot y}{x} \right) \][/tex]
2. Set the logarithmic expressions equal to each other:
According to the given equation:
[tex]\[ \log_2 \left( \frac{11 \cdot y}{x} \right) = \log_2 \left( \frac{11}{9} \right) \][/tex]
3. Equate the arguments:
Since the logarithms are equal, their arguments must also be equal:
[tex]\[ \frac{11 \cdot y}{x} = \frac{11}{9} \][/tex]
4. Simplify the equation:
Divide both sides by 11 to isolate the fraction on the left side:
[tex]\[ \frac{y}{x} = \frac{1}{9} \][/tex]
5. Solve for [tex]\(x\)[/tex] in terms of [tex]\(y\)[/tex]:
[tex]\[ y = \frac{x}{9} \][/tex]
6. Determine specific values:
We can choose specific values for [tex]\(x\)[/tex] and [tex]\(y\)[/tex] that satisfy this equation. A straightforward solution is to set [tex]\(y = 1\)[/tex]. Thus:
[tex]\[ \frac{1}{x} = \frac{1}{9} \][/tex]
7. Find the value of [tex]\(x\)[/tex]:
[tex]\[ x = 9 \][/tex]
So the specific values that satisfy the equation are:
[tex]\[ (x, y) = (9, 1) \][/tex]
Hence, the solution to the given logarithmic equation is:
[tex]\[ (x, y) = (9, 1) \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.