At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To solve the equation [tex]\(3\left(2^{2t-5}\right) - 4 = 10\)[/tex], let's follow these steps in order:
1. Simplify the equation by isolating the exponential term:
[tex]\[ 3\left(2^{2t - 5}\right) - 4 + 4 = 10 + 4 \][/tex]
Simplified:
[tex]\[ 3\left(2^{2t - 5}\right) = 14 \][/tex]
2. Divide both sides by 3 to further isolate the exponential term:
[tex]\[ \left(2^{2t - 5}\right) = \frac{14}{3} \][/tex]
3. Take the logarithm of each side to decompose the exponent:
[tex]\[ \log \left(2^{2t - 5}\right) = \log \left(\frac{14}{3}\right) \][/tex]
4. Use the power rule of logarithms (i.e., [tex]\( \log(a^b) = b \log(a) \)[/tex]) to bring down the exponent:
[tex]\[ (2t - 5) \log(2) = \log \left(\frac{14}{3}\right) \][/tex]
5. Solve for [tex]\( t \)[/tex] by isolating it step by step:
[tex]\[ 2t - 5 = \frac{\log \left(\frac{14}{3}\right)}{\log(2)} \][/tex]
Simplify further:
[tex]\[ 2t = \frac{\log \left(\frac{14}{3}\right)}{\log(2)} + 5 \][/tex]
Finally:
[tex]\[ t = \frac{\frac{\log \left(\frac{14}{3}\right)}{\log(2)} + 5}{2} \][/tex]
Given that we have the numerical solution involved in detailed logarithm calculations, the intermediate result for [tex]\( \frac{\log \left(\frac{14}{3}\right)}{\log(2)}\)[/tex] is approximately 2.722, and the final value of [tex]\( t \)[/tex] is approximately 3.611. Therefore,
Thus, following all steps correctly, we can approximate:
[tex]\[ t \approx 3.611 \][/tex]
1. Simplify the equation by isolating the exponential term:
[tex]\[ 3\left(2^{2t - 5}\right) - 4 + 4 = 10 + 4 \][/tex]
Simplified:
[tex]\[ 3\left(2^{2t - 5}\right) = 14 \][/tex]
2. Divide both sides by 3 to further isolate the exponential term:
[tex]\[ \left(2^{2t - 5}\right) = \frac{14}{3} \][/tex]
3. Take the logarithm of each side to decompose the exponent:
[tex]\[ \log \left(2^{2t - 5}\right) = \log \left(\frac{14}{3}\right) \][/tex]
4. Use the power rule of logarithms (i.e., [tex]\( \log(a^b) = b \log(a) \)[/tex]) to bring down the exponent:
[tex]\[ (2t - 5) \log(2) = \log \left(\frac{14}{3}\right) \][/tex]
5. Solve for [tex]\( t \)[/tex] by isolating it step by step:
[tex]\[ 2t - 5 = \frac{\log \left(\frac{14}{3}\right)}{\log(2)} \][/tex]
Simplify further:
[tex]\[ 2t = \frac{\log \left(\frac{14}{3}\right)}{\log(2)} + 5 \][/tex]
Finally:
[tex]\[ t = \frac{\frac{\log \left(\frac{14}{3}\right)}{\log(2)} + 5}{2} \][/tex]
Given that we have the numerical solution involved in detailed logarithm calculations, the intermediate result for [tex]\( \frac{\log \left(\frac{14}{3}\right)}{\log(2)}\)[/tex] is approximately 2.722, and the final value of [tex]\( t \)[/tex] is approximately 3.611. Therefore,
Thus, following all steps correctly, we can approximate:
[tex]\[ t \approx 3.611 \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.