Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To find the substitution that transforms the original equation [tex]\(x^8 - 3x^4 + 2 = 0\)[/tex] into a quadratic equation, let's examine each option step-by-step.
### Option 1: [tex]\( u = x^2 \)[/tex]
Substituting [tex]\( u = x^2 \)[/tex] into the equation:
[tex]\[ x^8 - 3 x^4 + 2 = 0 \][/tex]
means revising the powers of [tex]\( x \)[/tex]:
[tex]\[ (u^4) - 3(u^2) + 2 = 0 \][/tex]
which transforms into:
[tex]\[ u^4 - 3u^2 + 2 = 0 \][/tex]
This is not a quadratic equation because the highest power of [tex]\( u \)[/tex] is 4.
### Option 2: [tex]\( u = x^4 \)[/tex]
Substituting [tex]\( u = x^4 \)[/tex] into the equation:
[tex]\[ x^8 - 3 x^4 + 2 = 0 \][/tex]
transforms it to:
[tex]\[ u^2 - 3u + 2 = 0 \][/tex]
This simplifies to:
[tex]\[ u^2 - 3u + 2 = 0 \][/tex]
This is a quadratic equation because the highest power of [tex]\( u \)[/tex] is 2.
### Option 3: [tex]\( u = x^8 \)[/tex]
Substituting [tex]\( u = x^8 \)[/tex] into the equation:
[tex]\[ x^8 - 3 x^4 + 2 = 0 \][/tex]
transforms it to:
[tex]\[ u - 3(x^4) + 2 = 0 \][/tex]
This does not transform into a quadratic form since the variable [tex]\( x^4 \)[/tex] remains and the powers are mixed.
### Option 4: [tex]\( u = x^{16} \)[/tex]
Substituting [tex]\( u = x^{16} \)[/tex] into the equation:
[tex]\[ x^8 - 3 x^4 + 2 = 0 \][/tex]
attempts to transform it to terms with [tex]\( x \)[/tex]:
[tex]\[ (u^{1/2}) - 3(x^4) + 2 = 0 \][/tex]
This does not transform into a simpler quadratic form either.
Thus, the best substitution to transform the given equation [tex]\( x^8 - 3 x^4 + 2 = 0 \)[/tex] into a quadratic equation is:
[tex]\[ u = x^4 \][/tex]
Therefore, the correct substitution is:
[tex]\[ u = x^4 \][/tex]
### Option 1: [tex]\( u = x^2 \)[/tex]
Substituting [tex]\( u = x^2 \)[/tex] into the equation:
[tex]\[ x^8 - 3 x^4 + 2 = 0 \][/tex]
means revising the powers of [tex]\( x \)[/tex]:
[tex]\[ (u^4) - 3(u^2) + 2 = 0 \][/tex]
which transforms into:
[tex]\[ u^4 - 3u^2 + 2 = 0 \][/tex]
This is not a quadratic equation because the highest power of [tex]\( u \)[/tex] is 4.
### Option 2: [tex]\( u = x^4 \)[/tex]
Substituting [tex]\( u = x^4 \)[/tex] into the equation:
[tex]\[ x^8 - 3 x^4 + 2 = 0 \][/tex]
transforms it to:
[tex]\[ u^2 - 3u + 2 = 0 \][/tex]
This simplifies to:
[tex]\[ u^2 - 3u + 2 = 0 \][/tex]
This is a quadratic equation because the highest power of [tex]\( u \)[/tex] is 2.
### Option 3: [tex]\( u = x^8 \)[/tex]
Substituting [tex]\( u = x^8 \)[/tex] into the equation:
[tex]\[ x^8 - 3 x^4 + 2 = 0 \][/tex]
transforms it to:
[tex]\[ u - 3(x^4) + 2 = 0 \][/tex]
This does not transform into a quadratic form since the variable [tex]\( x^4 \)[/tex] remains and the powers are mixed.
### Option 4: [tex]\( u = x^{16} \)[/tex]
Substituting [tex]\( u = x^{16} \)[/tex] into the equation:
[tex]\[ x^8 - 3 x^4 + 2 = 0 \][/tex]
attempts to transform it to terms with [tex]\( x \)[/tex]:
[tex]\[ (u^{1/2}) - 3(x^4) + 2 = 0 \][/tex]
This does not transform into a simpler quadratic form either.
Thus, the best substitution to transform the given equation [tex]\( x^8 - 3 x^4 + 2 = 0 \)[/tex] into a quadratic equation is:
[tex]\[ u = x^4 \][/tex]
Therefore, the correct substitution is:
[tex]\[ u = x^4 \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.