At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

The function [tex][tex]$g(x)=|x-6|-8$[/tex][/tex] is graphed. What is the range?

A. [tex]\{y \mid y \ \textgreater \ -8\}[/tex]
B. [tex]\{y \mid y \geq -8\}[/tex]
C. [tex]\{y \mid y \ \textless \ -8\}[/tex]
D. [tex]\{y \mid y \text{ is all real numbers}\}[/tex]


Sagot :

To find the range of the function [tex]\( g(x) = |x - 6| - 8 \)[/tex], let's analyze the behavior of the function step by step.

1. Understanding the Absolute Value Function:
The function [tex]\( g(x) \)[/tex] involves the absolute value expression [tex]\( |x - 6| \)[/tex]. The absolute value function [tex]\( |x| \)[/tex] returns the non-negative value (distance from zero) of [tex]\( x \)[/tex]. Therefore, the expression [tex]\( |x - 6| \)[/tex] represents the distance of [tex]\( x \)[/tex] from 6, which is always non-negative. This means:
[tex]\[ |x - 6| \geq 0 \quad \text{for all } x. \][/tex]

2. Shifting the Absolute Value Function:
The function [tex]\( g(x) = |x - 6| - 8 \)[/tex] subtracts 8 from [tex]\( |x - 6| \)[/tex]. We know that [tex]\( |x - 6| \)[/tex] can take on all non-negative values starting from 0. So, the minimum value of [tex]\( |x - 6| \)[/tex] is 0, which occurs when [tex]\( x = 6 \)[/tex].

3. Determining the Minimum Value of [tex]\( g(x) \)[/tex]:
When [tex]\( x = 6 \)[/tex]:
[tex]\[ g(6) = |6 - 6| - 8 = 0 - 8 = -8. \][/tex]
This shows that the minimum value of [tex]\( g(x) \)[/tex] is -8.

4. Range of [tex]\( g(x) \)[/tex]:
As [tex]\( |x - 6| \)[/tex] increases from 0 upwards without bound (for values of [tex]\( x \)[/tex] other than 6), [tex]\( g(x) \)[/tex] will take on values:
[tex]\[ g(x) = |x - 6| - 8 \geq 0 - 8 = -8. \][/tex]
This means that [tex]\( g(x) \)[/tex] can be equal to -8 or any value greater than -8. Therefore, the range of [tex]\( g(x) \)[/tex] includes all real numbers [tex]\( y \)[/tex] such that [tex]\( y \geq -8 \)[/tex].

Putting this all together, the range of the function [tex]\( g(x) = |x - 6| - 8 \)[/tex] is:
[tex]\[ \{ y \mid y \geq -8 \}. \][/tex]

Hence, the correct choice is:
\[
\{ y \mid y \geq -8 \}.
\
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.