Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To understand the difference between the graphs of [tex]\( f(x) = x^2 + 4 \)[/tex] and [tex]\( g(y) = y^2 + 4 \)[/tex], we need to interpret the transformations that can be applied to these functions.
1. Graph of [tex]\( f(x) = x^2 + 4 \)[/tex]:
- This is a parabolic function.
- The vertex of this parabola is at the point (0, 4).
- The parabola opens upwards since the coefficient of [tex]\( x^2 \)[/tex] is positive.
2. Graph of [tex]\( g(y) = y^2 + 4 \)[/tex]:
- On the surface, it appears to be similarly structured to [tex]\( f(x) = x^2 + 4 \)[/tex], but written in terms of [tex]\( y \)[/tex] instead of [tex]\( x \)[/tex].
- When we set [tex]\( y = f(x) \)[/tex], we get [tex]\( y = x^2 + 4 \)[/tex].
- Reflecting [tex]\( f(x) \)[/tex] over the line [tex]\( y = x \)[/tex] means swapping the roles of [tex]\( x \)[/tex] and [tex]\( y \)[/tex].
Now let's determine which transformation appropriately describes [tex]\( g(y) \)[/tex]:
- Option A: [tex]\( g(y) \)[/tex] is a reflection of [tex]\( f(x) \)[/tex] over the line [tex]\( y = x \)[/tex].
- Reflecting over [tex]\( y = x \)[/tex] swaps [tex]\( x \)[/tex] and [tex]\( y \)[/tex].
- This corresponds exactly to how we've defined [tex]\( f(x) = x^2 + 4 \)[/tex] and [tex]\( g(y) = y^2 + 4 \)[/tex].
- Option B: [tex]\( g(y) \)[/tex] is a reflection of [tex]\( f(x) \)[/tex] over the [tex]\( y \)[/tex]-axis.
- Reflecting over the [tex]\( y \)[/tex]-axis changes [tex]\( x \)[/tex] to [tex]\(-x\)[/tex].
- [tex]\( f(x) \)[/tex] would then become [tex]\( f(-x) \)[/tex], or [tex]\((-x)^2 + 4 = x^2 + 4 \)[/tex], which is still [tex]\( f(x) \)[/tex], so this doesn't describe a change to [tex]\( g(y) \)[/tex].
- Option C: [tex]\( g(y) \)[/tex] is a reflection of [tex]\( f(x) \)[/tex] over the [tex]\( x \)[/tex]-axis.
- Reflecting over the [tex]\( x \)[/tex]-axis changes [tex]\( y \)[/tex] to [tex]\(-y\)[/tex].
- Thus, [tex]\( g(y) \)[/tex] becomes [tex]\( -f(x) \)[/tex], or [tex]\(-(x^2 + 4) = -x^2 - 4 \)[/tex], which doesn't match the form of [tex]\( g(y) \)[/tex].
- Option D: [tex]\( g(y) \)[/tex] is a reflection of [tex]\( f(x) \)[/tex] over the line [tex]\( y = 1 \)[/tex].
- Reflecting over [tex]\( y = 1 \)[/tex] would translate the function up or down relative to [tex]\( y = 1 \)[/tex].
- This does not produce a simple [tex]\( y^2 + 4 \)[/tex] transformation.
Combining these interpretations, the correct difference between [tex]\( f(x) \)[/tex] and [tex]\( g(y) \)[/tex] is:
Option A: [tex]\( g(y) \)[/tex] is a reflection of [tex]\( f(x) \)[/tex] over the line [tex]\( y = x \)[/tex].
1. Graph of [tex]\( f(x) = x^2 + 4 \)[/tex]:
- This is a parabolic function.
- The vertex of this parabola is at the point (0, 4).
- The parabola opens upwards since the coefficient of [tex]\( x^2 \)[/tex] is positive.
2. Graph of [tex]\( g(y) = y^2 + 4 \)[/tex]:
- On the surface, it appears to be similarly structured to [tex]\( f(x) = x^2 + 4 \)[/tex], but written in terms of [tex]\( y \)[/tex] instead of [tex]\( x \)[/tex].
- When we set [tex]\( y = f(x) \)[/tex], we get [tex]\( y = x^2 + 4 \)[/tex].
- Reflecting [tex]\( f(x) \)[/tex] over the line [tex]\( y = x \)[/tex] means swapping the roles of [tex]\( x \)[/tex] and [tex]\( y \)[/tex].
Now let's determine which transformation appropriately describes [tex]\( g(y) \)[/tex]:
- Option A: [tex]\( g(y) \)[/tex] is a reflection of [tex]\( f(x) \)[/tex] over the line [tex]\( y = x \)[/tex].
- Reflecting over [tex]\( y = x \)[/tex] swaps [tex]\( x \)[/tex] and [tex]\( y \)[/tex].
- This corresponds exactly to how we've defined [tex]\( f(x) = x^2 + 4 \)[/tex] and [tex]\( g(y) = y^2 + 4 \)[/tex].
- Option B: [tex]\( g(y) \)[/tex] is a reflection of [tex]\( f(x) \)[/tex] over the [tex]\( y \)[/tex]-axis.
- Reflecting over the [tex]\( y \)[/tex]-axis changes [tex]\( x \)[/tex] to [tex]\(-x\)[/tex].
- [tex]\( f(x) \)[/tex] would then become [tex]\( f(-x) \)[/tex], or [tex]\((-x)^2 + 4 = x^2 + 4 \)[/tex], which is still [tex]\( f(x) \)[/tex], so this doesn't describe a change to [tex]\( g(y) \)[/tex].
- Option C: [tex]\( g(y) \)[/tex] is a reflection of [tex]\( f(x) \)[/tex] over the [tex]\( x \)[/tex]-axis.
- Reflecting over the [tex]\( x \)[/tex]-axis changes [tex]\( y \)[/tex] to [tex]\(-y\)[/tex].
- Thus, [tex]\( g(y) \)[/tex] becomes [tex]\( -f(x) \)[/tex], or [tex]\(-(x^2 + 4) = -x^2 - 4 \)[/tex], which doesn't match the form of [tex]\( g(y) \)[/tex].
- Option D: [tex]\( g(y) \)[/tex] is a reflection of [tex]\( f(x) \)[/tex] over the line [tex]\( y = 1 \)[/tex].
- Reflecting over [tex]\( y = 1 \)[/tex] would translate the function up or down relative to [tex]\( y = 1 \)[/tex].
- This does not produce a simple [tex]\( y^2 + 4 \)[/tex] transformation.
Combining these interpretations, the correct difference between [tex]\( f(x) \)[/tex] and [tex]\( g(y) \)[/tex] is:
Option A: [tex]\( g(y) \)[/tex] is a reflection of [tex]\( f(x) \)[/tex] over the line [tex]\( y = x \)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.