Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

Raquel and Van live in two different cities. As part of a project, they each record the lowest prices for a gallon of gas at gas stations around their cities on the same day. Raquel's data show [tex]$\bar{x}=3.42$[/tex] and [tex]$\sigma=0.07$[/tex]. Van's data show [tex]$\bar{x}=3.78$[/tex] and [tex]$\sigma=0.23$[/tex].

Which statement is true about their gas-price data?

A. Raquel's data are most likely closer to [tex]$\$[/tex]3.42[tex]$ than Van's data are to $[/tex]\[tex]$3.78$[/tex].

B. Van's data are most likely closer to [tex]$\$[/tex]3.42[tex]$ than Raquel's data are to $[/tex]\[tex]$3.78$[/tex].

C. Raquel's data are most likely closer to [tex]$\$[/tex]3.78[tex]$ than Van's data are to $[/tex]\[tex]$3.42$[/tex].

D. Van's data are most likely closer to [tex]$\$[/tex]3.78[tex]$ than Raquel's data are to $[/tex]\[tex]$3.42$[/tex].


Sagot :

To determine which statement is true about Raquel's and Van's gas-price data, let's analyze the given information.

Raquel's data:
- Mean ([tex]$\bar{x}$[/tex]): \[tex]$3.42 - Standard deviation ($[/tex]\sigma[tex]$): 0.07 Van's data: - Mean ($[/tex]\bar{x}[tex]$): \$[/tex]3.78
- Standard deviation ([tex]$\sigma$[/tex]): 0.23

The standard deviation is a measure of the amount of variation or dispersion in a set of values. A smaller standard deviation indicates that the values tend to be closer to the mean, while a larger standard deviation indicates that the values are spread out over a larger range.

For Raquel:
- Mean is \[tex]$3.42, and the standard deviation is 0.07. - This small standard deviation suggests that Raquel's gas prices are closely clustered around \$[/tex]3.42.

For Van:
- Mean is \[tex]$3.78, and the standard deviation is 0.23. - This larger standard deviation suggests that Van's gas prices vary widely around \$[/tex]3.78.

The key to determining which dataset's values are more tightly clustered around their mean is comparing their standard deviations. Raquel's smaller standard deviation (0.07) indicates that her gas prices are more consistently close to \[tex]$3.42 compared to Van's gas prices being close to \$[/tex]3.78, which have a larger spread (0.23).

Therefore, the proper statement based on their data is:
Raquel's data are most likely closer to \[tex]$3.42 than Van's data are to \$[/tex]3.78.

This is the most accurate reflection of the tight clustering of Raquel's data around her mean price compared to Van's.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.