Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine what [tex]\( V(r) \)[/tex] represents, let us carefully analyze the function [tex]\( V(r) \)[/tex].
The function [tex]\( V(r) = \frac{4}{3} \pi r^3 \)[/tex] is given. Here, [tex]\( r \)[/tex] represents the radius of a sphere (in this case, a basketball), and [tex]\( V(r) \)[/tex] represents the function that computes the volume of the basketball given this radius.
Let's break down the function step-by-step:
1. The term [tex]\( r^3 \)[/tex] is the cube of the radius, [tex]\( r \)[/tex]. This represents the radius raised to the third power.
2. The constant [tex]\( \frac{4}{3} \)[/tex] is a coefficient used in the volume formula for spheres.
3. [tex]\( \pi \)[/tex] is the mathematical constant Pi (approximately 3.14159).
By multiplying these together, you get the volume of the basketball when the radius is [tex]\( r \)[/tex].
From this analysis, we can conclude:
- [tex]\( V(r) \)[/tex] does not represent the radius; it represents a volume.
- The variable [tex]\( r \)[/tex] is clearly the radius used within the formula.
Hence, [tex]\( V(r) \)[/tex] represents the calculated volume of the basketball when the radius is [tex]\( r \)[/tex].
So, the correct interpretation of [tex]\( V(r) \)[/tex] is:
The volume of the basketball when the radius is [tex]\( r \)[/tex].
The function [tex]\( V(r) = \frac{4}{3} \pi r^3 \)[/tex] is given. Here, [tex]\( r \)[/tex] represents the radius of a sphere (in this case, a basketball), and [tex]\( V(r) \)[/tex] represents the function that computes the volume of the basketball given this radius.
Let's break down the function step-by-step:
1. The term [tex]\( r^3 \)[/tex] is the cube of the radius, [tex]\( r \)[/tex]. This represents the radius raised to the third power.
2. The constant [tex]\( \frac{4}{3} \)[/tex] is a coefficient used in the volume formula for spheres.
3. [tex]\( \pi \)[/tex] is the mathematical constant Pi (approximately 3.14159).
By multiplying these together, you get the volume of the basketball when the radius is [tex]\( r \)[/tex].
From this analysis, we can conclude:
- [tex]\( V(r) \)[/tex] does not represent the radius; it represents a volume.
- The variable [tex]\( r \)[/tex] is clearly the radius used within the formula.
Hence, [tex]\( V(r) \)[/tex] represents the calculated volume of the basketball when the radius is [tex]\( r \)[/tex].
So, the correct interpretation of [tex]\( V(r) \)[/tex] is:
The volume of the basketball when the radius is [tex]\( r \)[/tex].
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.