Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine which of the given functions represent exponential growth, let's analyze them one by one.
1. Function [tex]\( f(x) \)[/tex]:
[tex]\[ f(x) = x + 2 \][/tex]
This is a linear function, as it represents a straight-line equation with a slope of 1 and a y-intercept of 2. Linear functions are not exponential growth.
2. Function [tex]\( g(x) \)[/tex]:
[tex]\[ g(x) = 2^x \][/tex]
This function is of the form [tex]\( a \cdot b^x \)[/tex], where [tex]\( a = 1 \)[/tex] and [tex]\( b = 2 \)[/tex]. For exponential growth, [tex]\( b \)[/tex] needs to be greater than 1. Here, [tex]\( b \)[/tex] is 2, which meets the criteria for exponential growth.
3. Function [tex]\( h(x) \)[/tex]:
[tex]\[ h(x) = 3x \][/tex]
This is another linear function, where the slope is 3. Like [tex]\( f(x) \)[/tex], linear functions do not represent exponential growth.
4. Function [tex]\( k(x) \)[/tex]:
[tex]\[ k(x) = x^2 \][/tex]
This is a quadratic function because it has the variable [tex]\( x \)[/tex] raised to the power of 2. Quadratic functions describe parabolic shapes and are not exponential growth functions.
Based on our analysis, the function that represents exponential growth is:
[tex]\[ y = g(x) = 2^x \][/tex]
1. Function [tex]\( f(x) \)[/tex]:
[tex]\[ f(x) = x + 2 \][/tex]
This is a linear function, as it represents a straight-line equation with a slope of 1 and a y-intercept of 2. Linear functions are not exponential growth.
2. Function [tex]\( g(x) \)[/tex]:
[tex]\[ g(x) = 2^x \][/tex]
This function is of the form [tex]\( a \cdot b^x \)[/tex], where [tex]\( a = 1 \)[/tex] and [tex]\( b = 2 \)[/tex]. For exponential growth, [tex]\( b \)[/tex] needs to be greater than 1. Here, [tex]\( b \)[/tex] is 2, which meets the criteria for exponential growth.
3. Function [tex]\( h(x) \)[/tex]:
[tex]\[ h(x) = 3x \][/tex]
This is another linear function, where the slope is 3. Like [tex]\( f(x) \)[/tex], linear functions do not represent exponential growth.
4. Function [tex]\( k(x) \)[/tex]:
[tex]\[ k(x) = x^2 \][/tex]
This is a quadratic function because it has the variable [tex]\( x \)[/tex] raised to the power of 2. Quadratic functions describe parabolic shapes and are not exponential growth functions.
Based on our analysis, the function that represents exponential growth is:
[tex]\[ y = g(x) = 2^x \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.