At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To find the experimental probability of spinning a "[tex]$C$[/tex]," follow these steps:
1. Identify the total number of spins:
- The problem states that the spinner is spun 75 times. This is our total number of spins.
2. Identify the frequency of spinning a "[tex]$C$[/tex]":
- According to the table, the frequency for "[tex]$C$[/tex]" is 14.
3. Calculate the experimental probability:
- The experimental probability of an event is calculated as the number of times the event occurs divided by the total number of trials.
- So, the experimental probability of spinning a "[tex]$C$[/tex]" is:
[tex]\[ \text{Experimental Probability of } C = \frac{\text{Frequency of } C}{\text{Total Number of Spins}} = \frac{14}{75} \][/tex]
4. Calculate the fraction:
- [tex]\[ \frac{14}{75} \approx 0.18666666666666668 \][/tex]
5. Round the result to the nearest hundredth:
- To round 0.18666666666666668 to the nearest hundredth, we look at the digit in the thousandths place, which is 6. Since it is 5 or greater, we round up the hundredths place from 8 to 9.
- Therefore, 0.18666666666666668 rounds to 0.19.
So, the experimental probability of spinning a "[tex]$C$[/tex]" rounded to the nearest hundredth is [tex]\(\boxed{0.19}\)[/tex]. The correct answer is [tex]\(d. 0.19\)[/tex].
1. Identify the total number of spins:
- The problem states that the spinner is spun 75 times. This is our total number of spins.
2. Identify the frequency of spinning a "[tex]$C$[/tex]":
- According to the table, the frequency for "[tex]$C$[/tex]" is 14.
3. Calculate the experimental probability:
- The experimental probability of an event is calculated as the number of times the event occurs divided by the total number of trials.
- So, the experimental probability of spinning a "[tex]$C$[/tex]" is:
[tex]\[ \text{Experimental Probability of } C = \frac{\text{Frequency of } C}{\text{Total Number of Spins}} = \frac{14}{75} \][/tex]
4. Calculate the fraction:
- [tex]\[ \frac{14}{75} \approx 0.18666666666666668 \][/tex]
5. Round the result to the nearest hundredth:
- To round 0.18666666666666668 to the nearest hundredth, we look at the digit in the thousandths place, which is 6. Since it is 5 or greater, we round up the hundredths place from 8 to 9.
- Therefore, 0.18666666666666668 rounds to 0.19.
So, the experimental probability of spinning a "[tex]$C$[/tex]" rounded to the nearest hundredth is [tex]\(\boxed{0.19}\)[/tex]. The correct answer is [tex]\(d. 0.19\)[/tex].
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.