Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

What is the [tex]\(y\)[/tex]-coordinate of point [tex]\(D\)[/tex] after a translation of [tex]\((x, y) \rightarrow (x+6, y-4)\)[/tex]?

[tex]\[ D^{\prime}(3.5, \square) \][/tex]


Sagot :

Let's solve the problem step-by-step to find the [tex]$y$[/tex]-coordinate of point [tex]$D$[/tex] after the translation.

1. Understand the Translation:
The translation given is [tex]$(x, y) \rightarrow (x+6, y-4)$[/tex]. This means that to find the new coordinates of any point after the translation:
- Add 6 to the original [tex]$x$[/tex]-coordinate.
- Subtract 4 from the original [tex]$y$[/tex]-coordinate.

2. Initial Coordinates of Point D:
The given coordinates of point D are [tex]$D(3.5, \square)$[/tex]. This means:
- The [tex]$x$[/tex]-coordinate is 3.5.
- The [tex]$y$[/tex]-coordinate needs to be determined.

3. Applying the Translation to the [tex]$y$[/tex]-coordinate:
Suppose the original [tex]$y$[/tex]-coordinate of point D is [tex]$y$[/tex]. After applying the translation [tex]$(x, y) \rightarrow (x+6, y-4)$[/tex], the new [tex]$y$[/tex]-coordinate becomes [tex]$y - 4$[/tex].

4. Resultant Coordinates:
Given that we need the new coordinates after translation and knowing the given transformation affects both [tex]$x$[/tex] and [tex]$y$[/tex] in specified ways.
- The [tex]$x$[/tex]-coordinate after translation is [tex]$3.5 + 6 = 9.5$[/tex].
- Similarly, determining the [tex]$y$[/tex]-coordinate directly from the results given, [tex]$y - 4 = -4$[/tex].

Therefore, since the translation reduces the original [tex]$y$[/tex] value by 4 and results in [tex]$-4$[/tex],
- Solving [tex]$y - 4 = -4$[/tex],
we get [tex]$y = 0$[/tex].

So, the original [tex]$y$[/tex]-coordinate was [tex]$0$[/tex], and after applying the translation [tex]$(x, y) \rightarrow(x+6, y-4)$[/tex], we get the new coordinate.

Thus, after the translation, point [tex]$D$[/tex] has new coordinates: [tex]$(3.5, 0) \rightarrow (9.5, -4)$[/tex].

Hence, the [tex]$y$[/tex]-coordinate of point [tex]$D$[/tex] after the translation is [tex]\(-4\)[/tex].
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.