Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To solve the equation [tex]\(-2(x + 9)^2 + 2 = -12\)[/tex] using square roots, follow these steps:
1. Rearrange the equation: First, we need to isolate the squared term.
[tex]\[ -2(x + 9)^2 + 2 = -12 \][/tex]
Subtract 2 from both sides to start isolating the squared term:
[tex]\[ -2(x + 9)^2 = -12 - 2 \][/tex]
This simplifies to:
[tex]\[ -2(x + 9)^2 = -14 \][/tex]
2. Isolate [tex]\((x + 9)^2\)[/tex]: Divide both sides by -2 to solve for [tex]\((x + 9)^2\)[/tex]:
[tex]\[ (x + 9)^2 = \frac{-14}{-2} \][/tex]
Which simplifies to:
[tex]\[ (x + 9)^2 = 7 \][/tex]
3. Take the square root of both sides: To eliminate the square, we take the square root of both sides of the equation:
[tex]\[ x + 9 = \pm\sqrt{7} \][/tex]
This yields two equations:
[tex]\[ x + 9 = \sqrt{7} \][/tex]
and
[tex]\[ x + 9 = -\sqrt{7} \][/tex]
4. Solve for [tex]\(x\)[/tex]: Subtract 9 from both sides in each case to find the solutions for [tex]\(x\)[/tex].
For the first equation, we get:
[tex]\[ x = \sqrt{7} - 9 \][/tex]
For the second equation, we get:
[tex]\[ x = -\sqrt{7} - 9 \][/tex]
5. Calculate the numerical values and round them: Finally, we calculate the numerical values for [tex]\(\sqrt{7}\)[/tex] and round the results to one decimal place.
[tex]\[ x_1 = \sqrt{7} - 9 \approx -6.4 \][/tex]
[tex]\[ x_2 = -\sqrt{7} - 9 \approx -11.6 \][/tex]
Thus, the solutions to the equation [tex]\(-2(x + 9)^2 + 2 = -12\)[/tex] rounded to one decimal place are:
[tex]\[ x = \{ -6.4, -11.6 \} \][/tex]
1. Rearrange the equation: First, we need to isolate the squared term.
[tex]\[ -2(x + 9)^2 + 2 = -12 \][/tex]
Subtract 2 from both sides to start isolating the squared term:
[tex]\[ -2(x + 9)^2 = -12 - 2 \][/tex]
This simplifies to:
[tex]\[ -2(x + 9)^2 = -14 \][/tex]
2. Isolate [tex]\((x + 9)^2\)[/tex]: Divide both sides by -2 to solve for [tex]\((x + 9)^2\)[/tex]:
[tex]\[ (x + 9)^2 = \frac{-14}{-2} \][/tex]
Which simplifies to:
[tex]\[ (x + 9)^2 = 7 \][/tex]
3. Take the square root of both sides: To eliminate the square, we take the square root of both sides of the equation:
[tex]\[ x + 9 = \pm\sqrt{7} \][/tex]
This yields two equations:
[tex]\[ x + 9 = \sqrt{7} \][/tex]
and
[tex]\[ x + 9 = -\sqrt{7} \][/tex]
4. Solve for [tex]\(x\)[/tex]: Subtract 9 from both sides in each case to find the solutions for [tex]\(x\)[/tex].
For the first equation, we get:
[tex]\[ x = \sqrt{7} - 9 \][/tex]
For the second equation, we get:
[tex]\[ x = -\sqrt{7} - 9 \][/tex]
5. Calculate the numerical values and round them: Finally, we calculate the numerical values for [tex]\(\sqrt{7}\)[/tex] and round the results to one decimal place.
[tex]\[ x_1 = \sqrt{7} - 9 \approx -6.4 \][/tex]
[tex]\[ x_2 = -\sqrt{7} - 9 \approx -11.6 \][/tex]
Thus, the solutions to the equation [tex]\(-2(x + 9)^2 + 2 = -12\)[/tex] rounded to one decimal place are:
[tex]\[ x = \{ -6.4, -11.6 \} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.