Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To solve the equation [tex]\( 3x^2 + 24x - 12 = 0 \)[/tex] by completing the square, follow these detailed steps:
1. Divide the entire equation by 3 to make the coefficient of [tex]\( x^2 \)[/tex] equal to 1:
[tex]\[ x^2 + 8x - 4 = 0 \][/tex]
2. Move the constant term to the other side of the equation:
[tex]\[ x^2 + 8x = 4 \][/tex]
3. Complete the square on the left side. To do this, add and subtract the square of half the coefficient of [tex]\( x \)[/tex], which is [tex]\( \left(\frac{8}{2}\right)^2 = 16 \)[/tex]:
[tex]\[ x^2 + 8x + 16 = 4 + 16 \][/tex]
Thus, the equation becomes:
[tex]\[ (x + 4)^2 = 20 \][/tex]
4. Take the square root of both sides:
[tex]\[ x + 4 = \pm\sqrt{20} \][/tex]
5. Solve for [tex]\( x \)[/tex] by isolating [tex]\( x \)[/tex]:
[tex]\[ x = -4 \pm \sqrt{20} \][/tex]
So, the solution to the equation [tex]\( 3x^2 + 24x - 12 = 0 \)[/tex] is:
[tex]\[ x = -4 \pm \sqrt{20} \][/tex]
- The constant term to be placed in Input Box 1 is -4.
- The number inside the radical to be placed in Input Box 2 is 20.
[tex]\[ \boxed{-4} \pm \sqrt{\boxed{20}} \][/tex]
1. Divide the entire equation by 3 to make the coefficient of [tex]\( x^2 \)[/tex] equal to 1:
[tex]\[ x^2 + 8x - 4 = 0 \][/tex]
2. Move the constant term to the other side of the equation:
[tex]\[ x^2 + 8x = 4 \][/tex]
3. Complete the square on the left side. To do this, add and subtract the square of half the coefficient of [tex]\( x \)[/tex], which is [tex]\( \left(\frac{8}{2}\right)^2 = 16 \)[/tex]:
[tex]\[ x^2 + 8x + 16 = 4 + 16 \][/tex]
Thus, the equation becomes:
[tex]\[ (x + 4)^2 = 20 \][/tex]
4. Take the square root of both sides:
[tex]\[ x + 4 = \pm\sqrt{20} \][/tex]
5. Solve for [tex]\( x \)[/tex] by isolating [tex]\( x \)[/tex]:
[tex]\[ x = -4 \pm \sqrt{20} \][/tex]
So, the solution to the equation [tex]\( 3x^2 + 24x - 12 = 0 \)[/tex] is:
[tex]\[ x = -4 \pm \sqrt{20} \][/tex]
- The constant term to be placed in Input Box 1 is -4.
- The number inside the radical to be placed in Input Box 2 is 20.
[tex]\[ \boxed{-4} \pm \sqrt{\boxed{20}} \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.