Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To solve the problem, we need to determine two key pieces of information from the function [tex]\( h(t) = -16t^2 + 40t + 1.5 \)[/tex]:
1. The maximum height the ball reaches.
2. The time it takes for the ball to hit the ground.
### Step 1: Finding the Maximum Height
The height function [tex]\( h(t) = -16t^2 + 40t + 1.5 \)[/tex] is a quadratic equation in standard form [tex]\( h(t) = at^2 + bt + c \)[/tex], where [tex]\( a = -16 \)[/tex], [tex]\( b = 40 \)[/tex], and [tex]\( c = 1.5 \)[/tex].
The maximum height of the ball, given by the parabola opening downwards (since [tex]\( a < 0 \)[/tex]), occurs at the vertex. The [tex]\( t \)[/tex]-coordinate of the vertex for a quadratic function [tex]\( at^2 + bt + c \)[/tex] is given by:
[tex]\[ t_{\text{max height}} = -\frac{b}{2a} \][/tex]
Plugging in the values:
[tex]\[ t_{\text{max height}} = -\frac{40}{2(-16)} = \frac{40}{32} = 1.25 \text{ seconds} \][/tex]
Next, we determine the height at this time by substituting [tex]\( t = 1.25 \)[/tex] back into the height function:
[tex]\[ h(1.25) = -16(1.25)^2 + 40(1.25) + 1.5 \][/tex]
Calculating this,
[tex]\[ h(1.25) = -16 \times 1.5625 + 40 \times 1.25 + 1.5 \][/tex]
[tex]\[ h(1.25) = -25 + 50 + 1.5 \][/tex]
[tex]\[ h(1.25) = 26.5 \text{ feet} \][/tex]
So, the maximum height attained by the ball is:
[tex]\[ 26.5 \text{ feet} \][/tex]
### Step 2: Finding the Time When the Ball Hits the Ground
The ball hits the ground when the height [tex]\( h(t) \)[/tex] is zero. Therefore, we set the height function equal to zero and solve for [tex]\( t \)[/tex].
[tex]\[ -16t^2 + 40t + 1.5 = 0 \][/tex]
Using the quadratic formula [tex]\( t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex]:
[tex]\[ t = \frac{-40 \pm \sqrt{40^2 - 4(-16)(1.5)}}{2(-16)} \][/tex]
[tex]\[ t = \frac{-40 \pm \sqrt{1600 + 96}}{-32} \][/tex]
[tex]\[ t = \frac{-40 \pm \sqrt{1696}}{-32} \][/tex]
[tex]\[ t = \frac{-40 \pm 41.2}{-32} \][/tex]
We get two solutions for [tex]\( t \)[/tex]:
[tex]\[ t_1 = \frac{-40 + 41.2}{-32} = \frac{1.2}{-32} = -0.0375 \text{ seconds (not physically meaningful)} \][/tex]
[tex]\[ t_2 = \frac{-40 - 41.2}{-32} = \frac{-81.2}{-32} = 2.54 \text{ seconds} \][/tex]
Rounding to the nearest tenth:
[tex]\[ t = 2.5 \text{ seconds} \][/tex]
Therefore, the cannonball is in the air for:
[tex]\[ 2.5 \text{ seconds} \][/tex]
### Summary
1. The maximum height of the cannonball is:
[tex]\[ 26.5 \text{ feet} \][/tex]
2. The cannonball is in the air for:
[tex]\[ 2.5 \text{ seconds} \][/tex]
1. The maximum height the ball reaches.
2. The time it takes for the ball to hit the ground.
### Step 1: Finding the Maximum Height
The height function [tex]\( h(t) = -16t^2 + 40t + 1.5 \)[/tex] is a quadratic equation in standard form [tex]\( h(t) = at^2 + bt + c \)[/tex], where [tex]\( a = -16 \)[/tex], [tex]\( b = 40 \)[/tex], and [tex]\( c = 1.5 \)[/tex].
The maximum height of the ball, given by the parabola opening downwards (since [tex]\( a < 0 \)[/tex]), occurs at the vertex. The [tex]\( t \)[/tex]-coordinate of the vertex for a quadratic function [tex]\( at^2 + bt + c \)[/tex] is given by:
[tex]\[ t_{\text{max height}} = -\frac{b}{2a} \][/tex]
Plugging in the values:
[tex]\[ t_{\text{max height}} = -\frac{40}{2(-16)} = \frac{40}{32} = 1.25 \text{ seconds} \][/tex]
Next, we determine the height at this time by substituting [tex]\( t = 1.25 \)[/tex] back into the height function:
[tex]\[ h(1.25) = -16(1.25)^2 + 40(1.25) + 1.5 \][/tex]
Calculating this,
[tex]\[ h(1.25) = -16 \times 1.5625 + 40 \times 1.25 + 1.5 \][/tex]
[tex]\[ h(1.25) = -25 + 50 + 1.5 \][/tex]
[tex]\[ h(1.25) = 26.5 \text{ feet} \][/tex]
So, the maximum height attained by the ball is:
[tex]\[ 26.5 \text{ feet} \][/tex]
### Step 2: Finding the Time When the Ball Hits the Ground
The ball hits the ground when the height [tex]\( h(t) \)[/tex] is zero. Therefore, we set the height function equal to zero and solve for [tex]\( t \)[/tex].
[tex]\[ -16t^2 + 40t + 1.5 = 0 \][/tex]
Using the quadratic formula [tex]\( t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex]:
[tex]\[ t = \frac{-40 \pm \sqrt{40^2 - 4(-16)(1.5)}}{2(-16)} \][/tex]
[tex]\[ t = \frac{-40 \pm \sqrt{1600 + 96}}{-32} \][/tex]
[tex]\[ t = \frac{-40 \pm \sqrt{1696}}{-32} \][/tex]
[tex]\[ t = \frac{-40 \pm 41.2}{-32} \][/tex]
We get two solutions for [tex]\( t \)[/tex]:
[tex]\[ t_1 = \frac{-40 + 41.2}{-32} = \frac{1.2}{-32} = -0.0375 \text{ seconds (not physically meaningful)} \][/tex]
[tex]\[ t_2 = \frac{-40 - 41.2}{-32} = \frac{-81.2}{-32} = 2.54 \text{ seconds} \][/tex]
Rounding to the nearest tenth:
[tex]\[ t = 2.5 \text{ seconds} \][/tex]
Therefore, the cannonball is in the air for:
[tex]\[ 2.5 \text{ seconds} \][/tex]
### Summary
1. The maximum height of the cannonball is:
[tex]\[ 26.5 \text{ feet} \][/tex]
2. The cannonball is in the air for:
[tex]\[ 2.5 \text{ seconds} \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.