At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine which equation correctly represents [tex]\( F \)[/tex], the force on an object due to gravity according to [tex]\( m \)[/tex], the object's mass, let's examine the given information step by step:
1. Direct Variation of Force with Mass:
- The problem states that the force of gravity on an object varies directly with its mass. This implies that as the mass [tex]\( m \)[/tex] increases or decreases, the force [tex]\( F \)[/tex] increases or decreases proportionally. Mathematically, if two quantities vary directly, they can be expressed as [tex]\( F = k \cdot m \)[/tex], where [tex]\( k \)[/tex] is the constant of variation.
2. Constant of Variation:
- The problem provides that the constant of variation due to gravity is [tex]\( 32.2 \)[/tex] feet per second squared. This means [tex]\( k = 32.2 \)[/tex].
3. Formulating the Equation:
- Plugging the constant of variation [tex]\( 32.2 \)[/tex] into the equation of direct variation, we get:
[tex]\[ F = 32.2 \cdot m \][/tex]
4. Choosing the Correct Equation:
- The correct equation must match the form [tex]\( F = 32.2 \cdot m \)[/tex].
- Among the provided options:
- [tex]\( F = 16.1 m \)[/tex] is incorrect since the constant is not [tex]\( 16.1 \)[/tex].
- [tex]\( F = \frac{16.1}{m^2} \)[/tex] is incorrect as it represents inverse square variation.
- [tex]\( F = 32.2 m \)[/tex] is correct as it matches our derived equation.
- [tex]\( F = \frac{32.2}{m^2} \)[/tex] is incorrect for the same reason as above.
Thus, the equation that represents [tex]\( F \)[/tex], the force on an object due to gravity according to [tex]\( m \)[/tex], the object's mass, is:
[tex]\[ \boxed{F = 32.2 m} \][/tex]
1. Direct Variation of Force with Mass:
- The problem states that the force of gravity on an object varies directly with its mass. This implies that as the mass [tex]\( m \)[/tex] increases or decreases, the force [tex]\( F \)[/tex] increases or decreases proportionally. Mathematically, if two quantities vary directly, they can be expressed as [tex]\( F = k \cdot m \)[/tex], where [tex]\( k \)[/tex] is the constant of variation.
2. Constant of Variation:
- The problem provides that the constant of variation due to gravity is [tex]\( 32.2 \)[/tex] feet per second squared. This means [tex]\( k = 32.2 \)[/tex].
3. Formulating the Equation:
- Plugging the constant of variation [tex]\( 32.2 \)[/tex] into the equation of direct variation, we get:
[tex]\[ F = 32.2 \cdot m \][/tex]
4. Choosing the Correct Equation:
- The correct equation must match the form [tex]\( F = 32.2 \cdot m \)[/tex].
- Among the provided options:
- [tex]\( F = 16.1 m \)[/tex] is incorrect since the constant is not [tex]\( 16.1 \)[/tex].
- [tex]\( F = \frac{16.1}{m^2} \)[/tex] is incorrect as it represents inverse square variation.
- [tex]\( F = 32.2 m \)[/tex] is correct as it matches our derived equation.
- [tex]\( F = \frac{32.2}{m^2} \)[/tex] is incorrect for the same reason as above.
Thus, the equation that represents [tex]\( F \)[/tex], the force on an object due to gravity according to [tex]\( m \)[/tex], the object's mass, is:
[tex]\[ \boxed{F = 32.2 m} \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.