At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine the coordinates of the point that is [tex]\(\frac{3}{5}\)[/tex] of the way from [tex]\(A(-9, 3)\)[/tex] to [tex]\(B(21, -2)\)[/tex], we need to follow these steps:
1. Identify the coordinates of points A and B:
- [tex]\(A = (-9, 3)\)[/tex]
- [tex]\(B = (21, -2)\)[/tex]
2. Calculate the ratio which is [tex]\(\frac{3}{5}\)[/tex]:
- This indicates that the point we are looking for is [tex]\(\frac{3}{5}\)[/tex] of the total distance from A to B.
3. Determine the changes in the x-coordinate and y-coordinate from A to B:
- Change in x-coordinate ([tex]\(\Delta x\)[/tex]) = [tex]\(B_x - A_x = 21 - (-9) = 21 + 9 = 30\)[/tex]
- Change in y-coordinate ([tex]\(\Delta y\)[/tex]) = [tex]\(B_y - A_y = -2 - 3 = -5\)[/tex]
4. Apply the ratio to the changes in the coordinates:
- For the x-coordinate, the point is [tex]\(\frac{3}{5}\)[/tex] of the way: [tex]\[\text{New } x = A_x + \left(\frac{3}{5}\right) \times \Delta x = -9 + \left(\frac{3}{5}\right) \times 30\][/tex]
[tex]\[= -9 + 18 = 9\][/tex]
- For the y-coordinate, the point is [tex]\(\frac{3}{5}\)[/tex] of the way: [tex]\[\text{New } y = A_y + \left(\frac{3}{5}\right) \times \Delta y = 3 + \left(\frac{3}{5}\right) \times (-5)\][/tex]
[tex]\[= 3 - 3 = 0\][/tex]
5. Combine the new coordinates:
- Hence, the coordinates of the point that is [tex]\(\frac{3}{5}\)[/tex] of the way from A to B are [tex]\((9, 0)\)[/tex].
So, the correct answer is [tex]\(D\)[/tex].
1. Identify the coordinates of points A and B:
- [tex]\(A = (-9, 3)\)[/tex]
- [tex]\(B = (21, -2)\)[/tex]
2. Calculate the ratio which is [tex]\(\frac{3}{5}\)[/tex]:
- This indicates that the point we are looking for is [tex]\(\frac{3}{5}\)[/tex] of the total distance from A to B.
3. Determine the changes in the x-coordinate and y-coordinate from A to B:
- Change in x-coordinate ([tex]\(\Delta x\)[/tex]) = [tex]\(B_x - A_x = 21 - (-9) = 21 + 9 = 30\)[/tex]
- Change in y-coordinate ([tex]\(\Delta y\)[/tex]) = [tex]\(B_y - A_y = -2 - 3 = -5\)[/tex]
4. Apply the ratio to the changes in the coordinates:
- For the x-coordinate, the point is [tex]\(\frac{3}{5}\)[/tex] of the way: [tex]\[\text{New } x = A_x + \left(\frac{3}{5}\right) \times \Delta x = -9 + \left(\frac{3}{5}\right) \times 30\][/tex]
[tex]\[= -9 + 18 = 9\][/tex]
- For the y-coordinate, the point is [tex]\(\frac{3}{5}\)[/tex] of the way: [tex]\[\text{New } y = A_y + \left(\frac{3}{5}\right) \times \Delta y = 3 + \left(\frac{3}{5}\right) \times (-5)\][/tex]
[tex]\[= 3 - 3 = 0\][/tex]
5. Combine the new coordinates:
- Hence, the coordinates of the point that is [tex]\(\frac{3}{5}\)[/tex] of the way from A to B are [tex]\((9, 0)\)[/tex].
So, the correct answer is [tex]\(D\)[/tex].
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.