At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the range of the function [tex]\( y = \sqrt[3]{x + 8} \)[/tex], let's analyze how this function behaves.
1. Understanding the cube root function:
- The cube root function [tex]\( \sqrt[3]{z} \)[/tex] is defined for all real numbers [tex]\( z \)[/tex]. This means that the cube root of any real number [tex]\( z \)[/tex] will result in a real number.
2. Transforming the argument:
- In our case, the function is [tex]\( y = \sqrt[3]{x + 8} \)[/tex]. Here, [tex]\( z = x + 8 \)[/tex].
3. Domain of [tex]\( x \)[/tex]:
- The expression [tex]\( x + 8 \)[/tex] can take any real value since [tex]\( x \)[/tex] is a real number. As [tex]\( x \)[/tex] spans all real numbers, so does [tex]\( x + 8 \)[/tex].
4. Behavior of [tex]\( y \)[/tex]:
- Since [tex]\( x + 8 \)[/tex] can be any real number, the cube root of [tex]\( x + 8 \)[/tex] will also output any real number. For example:
- If [tex]\( x \)[/tex] is very large positively, [tex]\( x + 8 \)[/tex] is also large, and [tex]\( \sqrt[3]{x + 8} \)[/tex] will be a large positive number.
- If [tex]\( x \)[/tex] is very large negatively, [tex]\( x + 8 \)[/tex] can still be very negative, and [tex]\( \sqrt[3]{x + 8} \)[/tex] will be a large negative number.
- If [tex]\( x+8 = 0 \)[/tex], then [tex]\( y = \sqrt[3]{0} = 0 \)[/tex].
Hence, the cube root function [tex]\( y = \sqrt[3]{x + 8} \)[/tex] can produce any real number as an output. Its range is all real numbers.
The correct answer is:
[tex]\[ -\infty < y < \infty \][/tex]
1. Understanding the cube root function:
- The cube root function [tex]\( \sqrt[3]{z} \)[/tex] is defined for all real numbers [tex]\( z \)[/tex]. This means that the cube root of any real number [tex]\( z \)[/tex] will result in a real number.
2. Transforming the argument:
- In our case, the function is [tex]\( y = \sqrt[3]{x + 8} \)[/tex]. Here, [tex]\( z = x + 8 \)[/tex].
3. Domain of [tex]\( x \)[/tex]:
- The expression [tex]\( x + 8 \)[/tex] can take any real value since [tex]\( x \)[/tex] is a real number. As [tex]\( x \)[/tex] spans all real numbers, so does [tex]\( x + 8 \)[/tex].
4. Behavior of [tex]\( y \)[/tex]:
- Since [tex]\( x + 8 \)[/tex] can be any real number, the cube root of [tex]\( x + 8 \)[/tex] will also output any real number. For example:
- If [tex]\( x \)[/tex] is very large positively, [tex]\( x + 8 \)[/tex] is also large, and [tex]\( \sqrt[3]{x + 8} \)[/tex] will be a large positive number.
- If [tex]\( x \)[/tex] is very large negatively, [tex]\( x + 8 \)[/tex] can still be very negative, and [tex]\( \sqrt[3]{x + 8} \)[/tex] will be a large negative number.
- If [tex]\( x+8 = 0 \)[/tex], then [tex]\( y = \sqrt[3]{0} = 0 \)[/tex].
Hence, the cube root function [tex]\( y = \sqrt[3]{x + 8} \)[/tex] can produce any real number as an output. Its range is all real numbers.
The correct answer is:
[tex]\[ -\infty < y < \infty \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.