Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Sure! Let's determine the group to which an element with the electron configuration [tex]\( \text{1s}^2 \ \text{2s}^2 \ \text{2p}^6 \ \text{3s}^2 \ \text{3p}^6 \ \text{3d}^1 \ \text{4s}^2 \)[/tex] belongs.
1. Identify the Period: The electron configuration shows electrons filling up to the [tex]\( \text{4s} \)[/tex] orbital. Thus, the element is in the 4th period.
2. Analyze the Outermost Orbitals:
- The configuration [tex]\( \text{4s}^2 \)[/tex] indicates there are 2 electrons in the [tex]\( \text{4s} \)[/tex] orbital.
- Additionally, there is 1 electron in the [tex]\( \text{3d} \)[/tex] orbital ( [tex]\( \text{3d}^1 \)[/tex] ).
3. Determine the Group:
- According to the periodic table, the group number can be determined primarily by the electrons in the outermost shell (valence electrons).
- The [tex]\( \text{4s}^2 \)[/tex] configuration means we have 2 valence electrons in the 4s subshell.
- The [tex]\( \text{3d} \)[/tex] electron also influences the group, as it adds to the count of valence electrons affecting transition metals.
Given the structure and location of the electron configuration, the element falls under the d-block of the periodic table, specifically the 4th period.
- The first column of the d-block starts from Scandium ([tex]\( \text{Sc} \)[/tex]), where [tex]\( \text{3d}^1 \text{4s}^2 = \text{3} \)[/tex] electrons.
Therefore, the element with the electron configuration [tex]\(1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6 \ 3d^1 \ 4s^2 \)[/tex] belongs to Group 3 of the periodic table.
1. Identify the Period: The electron configuration shows electrons filling up to the [tex]\( \text{4s} \)[/tex] orbital. Thus, the element is in the 4th period.
2. Analyze the Outermost Orbitals:
- The configuration [tex]\( \text{4s}^2 \)[/tex] indicates there are 2 electrons in the [tex]\( \text{4s} \)[/tex] orbital.
- Additionally, there is 1 electron in the [tex]\( \text{3d} \)[/tex] orbital ( [tex]\( \text{3d}^1 \)[/tex] ).
3. Determine the Group:
- According to the periodic table, the group number can be determined primarily by the electrons in the outermost shell (valence electrons).
- The [tex]\( \text{4s}^2 \)[/tex] configuration means we have 2 valence electrons in the 4s subshell.
- The [tex]\( \text{3d} \)[/tex] electron also influences the group, as it adds to the count of valence electrons affecting transition metals.
Given the structure and location of the electron configuration, the element falls under the d-block of the periodic table, specifically the 4th period.
- The first column of the d-block starts from Scandium ([tex]\( \text{Sc} \)[/tex]), where [tex]\( \text{3d}^1 \text{4s}^2 = \text{3} \)[/tex] electrons.
Therefore, the element with the electron configuration [tex]\(1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6 \ 3d^1 \ 4s^2 \)[/tex] belongs to Group 3 of the periodic table.
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.