Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine the measure of the unknown angle [tex]\( x \)[/tex] in a right triangle where [tex]\(\sin(x) = \frac{5}{8.3}\)[/tex], we can follow these steps:
1. Understand the given values:
- The length of the side opposite the angle [tex]\( x \)[/tex] is 5 units.
- The length of the hypotenuse is 8.3 units.
2. Setup the sine function:
- By definition, [tex]\(\sin(x) = \frac{\text{opposite}}{\text{hypotenuse}}\)[/tex].
- So, [tex]\(\sin(x) = \frac{5}{8.3}\)[/tex].
3. Calculate [tex]\( x \)[/tex]:
- To find [tex]\( x \)[/tex], take the inverse sine (arcsine) of [tex]\(\frac{5}{8.3}\)[/tex]:
[tex]\[ x = \sin^{-1}\left(\frac{5}{8.3}\right) \][/tex]
4. Get the numerical value of [tex]\( x \)[/tex]:
- The value of [tex]\( \sin^{-1}\left(\frac{5}{8.3}\right) \)[/tex] is approximately 0.6465165714340122 radians.
5. Convert the angle to degrees:
- Since angles are often expressed in degrees, we convert radians to degrees.
- Using the conversion [tex]\(1 \text{ radian} = \frac{180}{\pi} \approx 57.2958\text{ degrees}\)[/tex]:
[tex]\[ x \text{ (in degrees)} = 0.6465165714340122 \times 57.2958 \approx 37.0426709284371 \text{ degrees} \][/tex]
So, the measure of the unknown angle [tex]\( x \)[/tex] is approximately 0.6465 radians or 37.0427 degrees.
1. Understand the given values:
- The length of the side opposite the angle [tex]\( x \)[/tex] is 5 units.
- The length of the hypotenuse is 8.3 units.
2. Setup the sine function:
- By definition, [tex]\(\sin(x) = \frac{\text{opposite}}{\text{hypotenuse}}\)[/tex].
- So, [tex]\(\sin(x) = \frac{5}{8.3}\)[/tex].
3. Calculate [tex]\( x \)[/tex]:
- To find [tex]\( x \)[/tex], take the inverse sine (arcsine) of [tex]\(\frac{5}{8.3}\)[/tex]:
[tex]\[ x = \sin^{-1}\left(\frac{5}{8.3}\right) \][/tex]
4. Get the numerical value of [tex]\( x \)[/tex]:
- The value of [tex]\( \sin^{-1}\left(\frac{5}{8.3}\right) \)[/tex] is approximately 0.6465165714340122 radians.
5. Convert the angle to degrees:
- Since angles are often expressed in degrees, we convert radians to degrees.
- Using the conversion [tex]\(1 \text{ radian} = \frac{180}{\pi} \approx 57.2958\text{ degrees}\)[/tex]:
[tex]\[ x \text{ (in degrees)} = 0.6465165714340122 \times 57.2958 \approx 37.0426709284371 \text{ degrees} \][/tex]
So, the measure of the unknown angle [tex]\( x \)[/tex] is approximately 0.6465 radians or 37.0427 degrees.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.