Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the slope of the linear function from the given table, we use the formula for the slope of a line passing through two points, which is:
[tex]\[ \text{slope} = \frac{\Delta y}{\Delta x} \][/tex]
Where [tex]\(\Delta y\)[/tex] is the change in the [tex]\(y\)[/tex]-coordinates (outputs) and [tex]\(\Delta x\)[/tex] is the change in the [tex]\(x\)[/tex]-coordinates (inputs).
Here is the table for reference:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline -2 & 8 \\ \hline -1 & 2 \\ \hline 0 & -4 \\ \hline 1 & -10 \\ \hline 2 & -16 \\ \hline \end{array} \][/tex]
Let's consider the first two points in the table to find the changes in [tex]\(y\)[/tex] and [tex]\(x\)[/tex]:
- Point 1: [tex]\((-2, 8)\)[/tex]
- Point 2: [tex]\((-1, 2)\)[/tex]
Calculate the change in [tex]\(y\)[/tex] ([tex]\(\Delta y\)[/tex]):
[tex]\[ \Delta y = y_2 - y_1 = 2 - 8 = -6 \][/tex]
Calculate the change in [tex]\(x\)[/tex] ([tex]\(\Delta x\)[/tex]):
[tex]\[ \Delta x = x_2 - x_1 = -1 - (-2) = -1 + 2 = 1 \][/tex]
Now, we can find the slope by dividing the change in [tex]\(y\)[/tex] by the change in [tex]\(x\)[/tex]:
[tex]\[ \text{slope} = \frac{\Delta y}{\Delta x} = \frac{-6}{1} = -6 \][/tex]
Thus, the slope of the function is:
[tex]\[ -6 \][/tex]
Among the given options, the correct answer is:
[tex]\[ \boxed{-6} \][/tex]
[tex]\[ \text{slope} = \frac{\Delta y}{\Delta x} \][/tex]
Where [tex]\(\Delta y\)[/tex] is the change in the [tex]\(y\)[/tex]-coordinates (outputs) and [tex]\(\Delta x\)[/tex] is the change in the [tex]\(x\)[/tex]-coordinates (inputs).
Here is the table for reference:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline -2 & 8 \\ \hline -1 & 2 \\ \hline 0 & -4 \\ \hline 1 & -10 \\ \hline 2 & -16 \\ \hline \end{array} \][/tex]
Let's consider the first two points in the table to find the changes in [tex]\(y\)[/tex] and [tex]\(x\)[/tex]:
- Point 1: [tex]\((-2, 8)\)[/tex]
- Point 2: [tex]\((-1, 2)\)[/tex]
Calculate the change in [tex]\(y\)[/tex] ([tex]\(\Delta y\)[/tex]):
[tex]\[ \Delta y = y_2 - y_1 = 2 - 8 = -6 \][/tex]
Calculate the change in [tex]\(x\)[/tex] ([tex]\(\Delta x\)[/tex]):
[tex]\[ \Delta x = x_2 - x_1 = -1 - (-2) = -1 + 2 = 1 \][/tex]
Now, we can find the slope by dividing the change in [tex]\(y\)[/tex] by the change in [tex]\(x\)[/tex]:
[tex]\[ \text{slope} = \frac{\Delta y}{\Delta x} = \frac{-6}{1} = -6 \][/tex]
Thus, the slope of the function is:
[tex]\[ -6 \][/tex]
Among the given options, the correct answer is:
[tex]\[ \boxed{-6} \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.