Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine which equation represents a line that is perpendicular to the line passing through the points [tex]\((-4,7)\)[/tex] and [tex]\((1,3)\)[/tex], we need to follow these steps:
1. Calculate the Slope of the Original Line:
The slope [tex]\( m \)[/tex] of a line passing through two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by the formula:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Substituting the coordinates of the two points:
[tex]\[ m = \frac{3 - 7}{1 - (-4)} = \frac{-4}{5} \][/tex]
So, the slope of the line through [tex]\((-4, 7)\)[/tex] and [tex]\((1, 3)\)[/tex] is [tex]\( -\frac{4}{5} \)[/tex].
2. Find the Slope of the Perpendicular Line:
The slope of a line that is perpendicular to another is the negative reciprocal of the original slope. The negative reciprocal of [tex]\( -\frac{4}{5} \)[/tex] is:
[tex]\[ \frac{5}{4} \][/tex]
3. Identify the Correct Equation:
We need to find the equation among the given options that has a slope of [tex]\( \frac{5}{4} \)[/tex].
Let's examine each option:
- Option A: [tex]\( y = \frac{4}{5} x - 3 \)[/tex] \\
Slope [tex]\( = \frac{4}{5} \)[/tex] (not correct)
- Option B: [tex]\( y = -\frac{4}{5} x + 6 \)[/tex] \\
Slope [tex]\( = -\frac{4}{5} \)[/tex] (not correct)
- Option C: [tex]\( y = -\frac{5}{4} x - 2 \)[/tex] \\
Slope [tex]\( = -\frac{5}{4} \)[/tex] (not correct)
- Option D: [tex]\( y = \frac{5}{4} x + 8 \)[/tex] \\
Slope [tex]\( = \frac{5}{4} \)[/tex] (correct)
Thus, the equation that represents a line perpendicular to the line passing through [tex]\((-4,7)\)[/tex] and [tex]\((1,3)\)[/tex] is:
[tex]\[ \boxed{y = \frac{5}{4} x + 8} \][/tex]
1. Calculate the Slope of the Original Line:
The slope [tex]\( m \)[/tex] of a line passing through two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by the formula:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Substituting the coordinates of the two points:
[tex]\[ m = \frac{3 - 7}{1 - (-4)} = \frac{-4}{5} \][/tex]
So, the slope of the line through [tex]\((-4, 7)\)[/tex] and [tex]\((1, 3)\)[/tex] is [tex]\( -\frac{4}{5} \)[/tex].
2. Find the Slope of the Perpendicular Line:
The slope of a line that is perpendicular to another is the negative reciprocal of the original slope. The negative reciprocal of [tex]\( -\frac{4}{5} \)[/tex] is:
[tex]\[ \frac{5}{4} \][/tex]
3. Identify the Correct Equation:
We need to find the equation among the given options that has a slope of [tex]\( \frac{5}{4} \)[/tex].
Let's examine each option:
- Option A: [tex]\( y = \frac{4}{5} x - 3 \)[/tex] \\
Slope [tex]\( = \frac{4}{5} \)[/tex] (not correct)
- Option B: [tex]\( y = -\frac{4}{5} x + 6 \)[/tex] \\
Slope [tex]\( = -\frac{4}{5} \)[/tex] (not correct)
- Option C: [tex]\( y = -\frac{5}{4} x - 2 \)[/tex] \\
Slope [tex]\( = -\frac{5}{4} \)[/tex] (not correct)
- Option D: [tex]\( y = \frac{5}{4} x + 8 \)[/tex] \\
Slope [tex]\( = \frac{5}{4} \)[/tex] (correct)
Thus, the equation that represents a line perpendicular to the line passing through [tex]\((-4,7)\)[/tex] and [tex]\((1,3)\)[/tex] is:
[tex]\[ \boxed{y = \frac{5}{4} x + 8} \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.