Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Certainly! Let's solve each question step-by-step.
### Question 6:
Given:
The quadratic polynomial is [tex]\( p(x) = 2x^2 - 7x + k \)[/tex].
It is given that the zeroes (roots) of the polynomial are reciprocal of each other.
Solution:
1. Let's denote the roots by [tex]\( \alpha \)[/tex] and [tex]\( \frac{1}{\alpha} \)[/tex].
2. For a quadratic polynomial [tex]\( ax^2 + bx + c \)[/tex], the product of the roots [tex]\(\alpha \cdot \frac{1}{\alpha}\)[/tex] is given by [tex]\(\frac{c}{a}\)[/tex].
Here, [tex]\( a = 2 \)[/tex] and [tex]\( c = k \)[/tex].
3. Therefore, the product of the roots is:
[tex]\[ \alpha \cdot \frac{1}{\alpha} = 1 = \frac{k}{2} \][/tex]
4. Solving for [tex]\( k \)[/tex]:
[tex]\[ 1 = \frac{k}{2} \implies k = 2 \][/tex]
So, the value of [tex]\( k \)[/tex] is [tex]\( 2 \)[/tex].
### Question 7:
Given:
The quadratic polynomial is [tex]\( x^2 + (a+1)x + b \)[/tex].
The zeroes (roots) of the polynomial are [tex]\( 2 \)[/tex] and [tex]\( -3 \)[/tex].
Solution:
1. For a quadratic polynomial [tex]\( x^2 + bx + c \)[/tex]:
- The sum of the roots is given by [tex]\( -\frac{b}{a} \)[/tex].
- The product of the roots is given by [tex]\( \frac{c}{a} \)[/tex].
Given roots are [tex]\( 2 \)[/tex] and [tex]\( -3 \)[/tex].
2. Sum of the roots:
[tex]\[ 2 + (-3) = -1 \][/tex]
The coefficient of [tex]\( x \)[/tex] here is [tex]\( a + 1 \)[/tex]. So, we have:
[tex]\[ a + 1 = -(-1) \implies a + 1 = 1 \implies a = 0 \][/tex]
3. Product of the roots:
[tex]\[ 2 \cdot (-3) = -6 \][/tex]
The constant term, [tex]\( b \)[/tex], is the product of the roots:
[tex]\[ b = -6 \][/tex]
So, the values are [tex]\( a = 0 \)[/tex] and [tex]\( b = -6 \)[/tex].
### Summary:
1. The value of [tex]\( k \)[/tex] is [tex]\( 2 \)[/tex].
2. The values of [tex]\( a \)[/tex] and [tex]\( b \)[/tex] are [tex]\( 0 \)[/tex] and [tex]\( -6 \)[/tex], respectively.
### Question 6:
Given:
The quadratic polynomial is [tex]\( p(x) = 2x^2 - 7x + k \)[/tex].
It is given that the zeroes (roots) of the polynomial are reciprocal of each other.
Solution:
1. Let's denote the roots by [tex]\( \alpha \)[/tex] and [tex]\( \frac{1}{\alpha} \)[/tex].
2. For a quadratic polynomial [tex]\( ax^2 + bx + c \)[/tex], the product of the roots [tex]\(\alpha \cdot \frac{1}{\alpha}\)[/tex] is given by [tex]\(\frac{c}{a}\)[/tex].
Here, [tex]\( a = 2 \)[/tex] and [tex]\( c = k \)[/tex].
3. Therefore, the product of the roots is:
[tex]\[ \alpha \cdot \frac{1}{\alpha} = 1 = \frac{k}{2} \][/tex]
4. Solving for [tex]\( k \)[/tex]:
[tex]\[ 1 = \frac{k}{2} \implies k = 2 \][/tex]
So, the value of [tex]\( k \)[/tex] is [tex]\( 2 \)[/tex].
### Question 7:
Given:
The quadratic polynomial is [tex]\( x^2 + (a+1)x + b \)[/tex].
The zeroes (roots) of the polynomial are [tex]\( 2 \)[/tex] and [tex]\( -3 \)[/tex].
Solution:
1. For a quadratic polynomial [tex]\( x^2 + bx + c \)[/tex]:
- The sum of the roots is given by [tex]\( -\frac{b}{a} \)[/tex].
- The product of the roots is given by [tex]\( \frac{c}{a} \)[/tex].
Given roots are [tex]\( 2 \)[/tex] and [tex]\( -3 \)[/tex].
2. Sum of the roots:
[tex]\[ 2 + (-3) = -1 \][/tex]
The coefficient of [tex]\( x \)[/tex] here is [tex]\( a + 1 \)[/tex]. So, we have:
[tex]\[ a + 1 = -(-1) \implies a + 1 = 1 \implies a = 0 \][/tex]
3. Product of the roots:
[tex]\[ 2 \cdot (-3) = -6 \][/tex]
The constant term, [tex]\( b \)[/tex], is the product of the roots:
[tex]\[ b = -6 \][/tex]
So, the values are [tex]\( a = 0 \)[/tex] and [tex]\( b = -6 \)[/tex].
### Summary:
1. The value of [tex]\( k \)[/tex] is [tex]\( 2 \)[/tex].
2. The values of [tex]\( a \)[/tex] and [tex]\( b \)[/tex] are [tex]\( 0 \)[/tex] and [tex]\( -6 \)[/tex], respectively.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.