Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the pre-image of the vertex [tex]\( A' \)[/tex] given the rule of reflection across the y-axis [tex]\( r_{\text{y-axis}}(x, y) \rightarrow (-x, y) \)[/tex]:
1. Understand the Reflection Rule: When reflecting a point across the y-axis, the x-coordinate changes sign while the y-coordinate remains the same. Thus, for a point [tex]\((x, y)\)[/tex] under reflection, the image becomes [tex]\((-x, y)\)[/tex].
2. Identify the Given Image [tex]\( A' \)[/tex]:
Suppose the coordinates of the image vertex [tex]\( A' \)[/tex] are [tex]\( (4, 2) \)[/tex].
3. Use the Rule to Find Pre-image:
- According to [tex]\( r_{\text{y-axis}}(x, y) \rightarrow (-x, y) \)[/tex], given the image [tex]\( A' = (4, 2) \)[/tex]:
- Let the pre-image be [tex]\((x, y)\)[/tex]. For the point [tex]\((4, 2)\)[/tex] to be the reflected image, we reverse the sign change transformation:
[tex]\[ -x = 4 \implies x = -4 \][/tex]
The y-coordinate remains unchanged:
[tex]\[ y = 2 \][/tex]
4. Combine the Coordinates and Verify:
Thus, the pre-image [tex]\( A \)[/tex] is [tex]\((-4, 2)\)[/tex].
Therefore, the pre-image of the vertex [tex]\( A' \)[/tex] is [tex]\( \boxed{(-4, 2)} \)[/tex].
1. Understand the Reflection Rule: When reflecting a point across the y-axis, the x-coordinate changes sign while the y-coordinate remains the same. Thus, for a point [tex]\((x, y)\)[/tex] under reflection, the image becomes [tex]\((-x, y)\)[/tex].
2. Identify the Given Image [tex]\( A' \)[/tex]:
Suppose the coordinates of the image vertex [tex]\( A' \)[/tex] are [tex]\( (4, 2) \)[/tex].
3. Use the Rule to Find Pre-image:
- According to [tex]\( r_{\text{y-axis}}(x, y) \rightarrow (-x, y) \)[/tex], given the image [tex]\( A' = (4, 2) \)[/tex]:
- Let the pre-image be [tex]\((x, y)\)[/tex]. For the point [tex]\((4, 2)\)[/tex] to be the reflected image, we reverse the sign change transformation:
[tex]\[ -x = 4 \implies x = -4 \][/tex]
The y-coordinate remains unchanged:
[tex]\[ y = 2 \][/tex]
4. Combine the Coordinates and Verify:
Thus, the pre-image [tex]\( A \)[/tex] is [tex]\((-4, 2)\)[/tex].
Therefore, the pre-image of the vertex [tex]\( A' \)[/tex] is [tex]\( \boxed{(-4, 2)} \)[/tex].
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.